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1.0 SUMMARY

The following document is the final report on a study of convolu-

tional coding techniques for the International Magnetosphere Explorers (IME)

Mother/Daughter and Heliocentric Missions (IMEMD/IMEH). Previous names for

these missions were Interplanetary Monitoring Platform (IMP) KK' and L

missions and also NASA/ESRO Mother/Daughter and NASA Heliocentric Missions

(NEMD/NH). This report is a consolidation of the three task reports

delivered to NASA Goddard Space Flight Center (GSFC) in December 1972,

March 1973, and April 1973. All of the technical material found in those

reports is duplicated here with explanatory material added.

The tasks imposed by GSFC in the contract statement of work will

now be stated to provide a starting point for the rest of the report.

1.1 STATEMENT OF WORK

The Contractor will conduct a study to determine:

o the optimum cost-effective/efficient signal design for the
Interplanetary Monitoring Platform, Mother/Daughter and
Heliocentric Missions (IMP K-K') compatible with the
Spaceflight Tracking and Data Network (STDN).

o the most cost-effective/efficient method(s) for ground
handling of the one-half convolutionally coded, downlink
telemetry received from these spacecraft. That is, should
the data be transmitted from the remote sites to the Project
Operations Control Center for decoding, or would noise inter-
ference significantly degrade the signal quality and so make
it more desirable to decode the data at the remote sites.
If the latter is more desirable, what are the most cost-
effective augmentations, implementations and techniques for
decoding at the remote sites?

1.1.1 TASK REPORT NO. 1

The bit error rate enhancement capability of the planned convolu-

tional coding technique significantly affects the optimum distribution of the
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downlink signal power between the carrier range code and telemetry. Therefore,

the Contractor will determine:

o The bit error rate enhancement that may be expected from

the planned coding technique as well as other competitive

techniques, for return link telemetry rates anticipated

to be no greater than 16,384 information BPS for the IMP

dual satellite mission and a maximum data rate of two

information KBPS for the downlink telemetry for the IMP

heliocentric mission. These rates will be programmable

upon command to three lower bi.t rates which are multiples

of 2N of the maxima.

o Cost-effectiveness trade-offs, in especially those relating

to the ground systems.

o Any interfacing problems associated with integrating decoding

equipment techniques at the remote ground stations.

These results are to document the performance of the convolutional

encoder-decoder in terms of bit error probability or coding gain for 10- 5

bit error probability.

1.1.2 TASK REPORT NO. 2

Given the results of Task Report No. 1 plus system noise temperatures

provided by NASA and using Effective Isotropic Radiated Power of .25 to 5.0

watts, the Contractor will determine the optimum power division among the

carrier, ranging signal and telemetry signal for the return link. Parameters

to be traded-off are range and range rate accuracy, time and signal power

required for acquisition and "lack," and bit error probability.

1.1.3 TASK REPORT NO. 3

o The Contractor will determine the feasibility of decoding and

decommutating in real and non-real time at the receiving ground

station.

o He will determine whether or n-ot hard-wired decoders are
appropriate or whether the decoding can be accomplished at

at the ground station with existing computer.
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o He will determine the practicality of "tying up" the on-site

computers for this purpose.

o He will examine the feasibility of transmitting the telemetry

signal, which has been extracted from the return link but
which has not been decoded or decommutated, over the NASCOM

network via wideband or narrowband lines.

For instance, it may be possible to use wideband channels such

as TELPAC A channels for real-time transmission to a central processor for

decoding and decommutating, or it may be possible to use conventional voice

bandwidth data lines for non-real time transmission to a central processor

for decoding and decommutating. In these latter modes, the Contractor will

assess the effect of the narrowband or wideband data transmission channels

on the net bit error probability at the output of the decoder at the central

processor.

o Cost figures will be developed to illustrate whether on-site

decoding and decommutating or remote decoding and decommutating
are advisable.

o The Contractor will provide definitive answers to the three

following questions, which will be documented as a separate

chapter of the final report.

(a) What can be done with the present on-site equipment for
the tasks outlined? This is primarily to establish a
baseline for comparison purposes.

(b) What would be the nature of a cost limited modification
to accomplish some of the coding advantages?

(c) What would be an optimum system with state of art
approaches including costs and advantages?

1.2 STUDY PLAN

The method that was used to fulfill the work objectives was to

perform Task 2 first, Task 1 second, and Task 3 third. The reason for this

was that it was felt that a determination of the required coding enhancement
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(gain) was in order before studying how such enhancement could be attained.

After that was accomplished Task 3 could be performed to complete the study.

1.2.1 FIRST TASK SUMMARY

With the above reordering of priorities out of the way, the first

task studied (Task 2 in the'statement of work) performed a power budget analysis.

The purpose was to determine the optimum modulation indices for the ranging

and telemetry subcarrier and as a result derive the telemetry coding gain

which would be necessary on the downlink.

The power budget is presented on several charts and is discussed

on an item by item basis so that each factor of the system is brought into

play with its associated impact. As the analysis progresses a series of

tradeoffs are made and duly noted. Finally, as a result of all of these

compromises, an optimal system is formed for the mission. Optimal here

means that set of network elements which assures the greatest quality of

data sent from the spacecrafts.

At the end of the analysis a section is presented which gathers,

discusses, and explains, in terms of system impact, the conclusions reached

in the items previously mentioned. After these conclusions are sufficiently

expounded upon, recommendations are set forth which set the trend for the

overall system design and Its network support.

By way of highlighting the results of the first task, it was found

-5
that the coding gain required was 5 dB at 10- 5 bit error probability; the

solar noise factor on the downlink dictates that the minimum halo radius
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on the Heliocentric mission be at least 60,000 km; the uplink signal-to-

noise on the ranging is marginal in the case that the null of the omni

receiving antenna is encountered on the Heliocentric mission; all other

uplinks can be made to have good margins by efficient use of network

facilities; finally, as expected, the Heliocentric mission is marginal

on the downlink when near the earth-sun line.

1.2.2 SECOND TASK SUMMARY

(1)
A major result of the Task 1 report was that the telemetry

system for the IMEMD/H missions required an Eb/No of 11.6 dB into the bit

synchronizer to achieve an error probability of 10
- 5 without coding. Since

only 7.2 dB was available in the IMEH mission when it was close to the sun

(this was due to solar noise which degraded the system by about 10 dB) it

was determined that at least a 5 dB coding gain should be designed into the

system forward error control units.

The second task attacks the problem of achieving the

5 dB. gain with a convolutional encoder used in conjunction with the appropriate

decoder. It gives the theory of convolutional codes as found in the

literature referenced in Section 5. After the.theory is presented, the

practical aspects of the encoding problem are discussed, and the important

and complex subject of decoding is taken up. Three decoders are treated,

namely, the Feedback Decoder, the Maximum Likelihood Decoder (also referred

to as the Viterbi Decoder), and finally the Sequential Decoder. All of these

are commonly used, however, only the last two provide the gain needed by the

IMEMD/H missions. The Feedback Decoder is thus only touched upon to the

extent necessary to eliminate it from consideration.
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The algorithms upon which the two candidate decoders are based

are fully developed,and then the practical aspects of implementing the

algorithms into decoder hardware are detailed. The culmination of the

above is the block diagram design of practical decoders with a discussion

of each block.

Finally after the pros and cons of both the Viterbi and the

Sequential Decoders have been weighed a recommendation is made to choose the

Viterbi. This is based on a tradeoff among performance, complexity, and

cost.

1.2.3 THIRD TASK SUMMARY

The third task completes the system study by lobking at the

the practical aspects of implementing the recommended encoding/decoding

system. The limitations of actual hardware together with the costs

involved are presented. Five possible configurations of the network

(Figure 3.46) are analyzed on a block by block basis, i.e., each part

of the system is scrutinized to ascertain whether or not it will prevent

the realization of the system or to determine if it is too'costly to be

practical. After this is done the advantages and disadvantages are listed

for each system.

In the conclusions and recommendations the material alluded to

above is used to arrive at an optimum system to support the missions. This

optimum system consists of the encoder arrived at in task 2 with each support

station performing the decoding locally and transmitting the decoded data to

Goddard Space Flight Center via the NASA Communications Network (NASCOM).

1-6



It will be shown in the text that follows that this system is

relatively simple to implement, cost effective, flexible (can be used for

future missions with a different bit rate and/or modulation scheme), and

provides the experimenter with quality data.
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2.0 INTRODUCTION

2.1 THE SOLAR WIND (2)

Both the IMEMD and IMEH missions will provide data on the solar

wind, therefore, a few facts will be stated about it. The solar wind was

virtually unknown until 1958 and it was only in 1962 that extensive measure-

ments took place. It is an emission of subatomic particles from the sun's

corona and consists mainly of protons and electrons. It is seen to be a

significant part of the solar system and its effect on the components of

the system is of great interest to scientists.

Its most prominent effect has been its influence on the comets

as they come into proximity with the sun. An explanation for the acceleration

of clouds of expelled gas from the heads of comets is that a force is exerted

by an ionized gas or plasma streaming out from the sun at hundreds of miles

per second.

Detecting devices were placed aboard early spacecraft to probe

the solar wind. In 1962 the Venus mission, Mariner 2, andin 1959 the

Russian mission, Lunik'Ill both provided measurements which confirmed its

existence and provided clues to its nature. It is a completely ionized

gas consisting mainly of an average of 80 protons and electrons per cubic

inch with the density varying from 1/10 to 10 times the average. The tempera-

tures of the protons and electrons are 100,000 degrees and 400,000 degrees

Fahrenheit, respectively. Heavier nucleis of helium, carbon, and oxygen

also were found in it. The average speed near the earth is 300 miles per

second with a variation of from 1/2 to 2 times the average.
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Since the sun rotates the particles in the solar wind bend

slightly in the direction of rotation; also due to the interaction with

the sun's magnetic field a force on the'sun is causing it to slow down.

The solar wind causes the sun's magnetic field to expand so that the field

extends farther than normally expected.

As far as the earth is concerned, the solar wind distorts the

earth's magnetic field so that it forms a tail called the geomagnetic tail

which is over three million miles in length. It is as if the magnetosphere

of the earth were armor around a projectile (the earth) placed in a wind

tunnel. The solar wind separates and passes around the armor coming togethe.r

far behind it. The point of joining is called the magnetopause.

The region between the bow wave, or shock, and the magnetopause

is called the magnetosheath, an area inhabited by the solar wind after passing

through the shock and by irregular magnetic fields, tattered fragments of

the sun's "elastic strings."

This complex interaction of solar wind and magnetic field may seem

like a relatively stable affair. Yet highly sensitive compasses have shown

that the Earth's magnetic field is subject to almost continuous aberrations.

And changes in the density and velocity of the solar wind occur frequently.

Occasionally solar flares erupt from the corona; vast dense streams of protons

and electrons collide with the Earth's magnetic field, distorting it further

and causing a wide range of geomagnetic storms and other activities, ranging

from the magnificent sight of an aurora to a teletype machine typing out

nonsense all by itself.

The solar wind-was discovered so recently that it is barely

mentioned in most undergraduate astronomy textbooks, and its role in the
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solar system and beyond has only been glimpsed. .(The answer is not known,

among other questions, as to how far out from the sun the solar wind blows.)

Not only will more be learned about this prominent presence in our corner of

the universe but the solar wind itself will serve as an increasingly valuable

tool for understanding other astronomical phemomena. For example, far beyond

the Earth the solar wind collides with interstellar gas and observing its

effects may shed light on the interstellar gas unobtainable by other methods.

The solar wind, indeed, may become a large laboratory for investigating the

nature of plasmas, the most common material of the universe.

2.2 THE IME MOTHER/DAUGHTER MISSION (3)(4)(5)(6)

In this section the mission of the Mother/Daughter satellites

will be described. To start the following material about the earth's

magnetic field and perturbations in it is submitted.

The earth's magnetic field is closely approximated by a field

emanating from a dipole source, similar to a bar magnet, which is tilted

11 degrees to the geographic equator. The postulated dipole source is

also displaced from the earth's center several hundred miles westward and

slightly to the north. As a result,- the flux or field lines are anomalistic

in distribution with reference to geographic coordinates. The most important

feature of the field due to the source location is that a region of space

above the South Atlantic Ocean has a much lower magnetic field strength for

any given altitude than anywhere else around the earth. The result is that

energetic charged particles, which are trapped on the field lines, come

much closer to earth in this region, thereby .producing a localized radiation

hazard to space vehicles in low altitude orbits.
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As described by Maxwell's equations, the earth's magnetic field

acts to deflect approaching charged particles and therefore is a partial

shield around the earth against cosmic particles. The magnetic field

becomes severely distorted at high altitudes due to the steady outward

movement of charged particles from the sun. The effects of this distortion

are normally felt down to altitudes of.five and six earth radii. However,

in times of solar disturbances, surges of particles of higher than average

energy cause the field to be temporarily unstable at these altitudes and

below. This produces several effects, such as auroral and ionospheric

disturbances, which are not well understood. When the disturbance is of

solar flare intensity, the sun's particles penetrate the earth's magnetic

field more effectively and can produce damaging radiation down to alti-

tudes below 100,000 feet over the polar regions. Cosmic particles of

galactic origin typically have sufficient energies to penetrate the magnetic

field everywhere and to produce ionization in matter down to the earth's

surface. However, the frequency of occurrence of these.particles is so

low that no particular hazard is involved.

There is a.shock wave associated with the solar wind earth

magnetic field interaction. This shock wave is analogous to the wave

created by the bow of a ship cutting through the water, and it is thus

termed a bow shock wave.

The Mother-Daughter mission has as its objectives the

measurement of physical phenomena occurring in the bow shock of the earth.

In order to do this, both mother and daughter will be placed into the

same orbit by a single launch vehicle, and then their orbits will be
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changed so that the two satellites go through their apogees at the same

time, but separated by fixed distances of 100 km the first year, 1000 km

the second year, and 5000 km the third year. The apogees themselves will

range somewhere between 15 and 25 earth radii (0.955 x 104 km and 1.59 x

105 km). The apogee separation allows measurement of the same phenomena

at different points in the shock wave.

A sketch of the spacecraft is shown in Figure 2.1 while Figure

2.2 shows a typical orbit.

2.3 THE NASA HELIOCENTRIC MISSION

In this section the mission of the heliocentric spacecraft

will be described.

The earth-sun libration point is that point on a line connect-

ing the centers of the sun and the earth where the gravitational forces of

the two celestial bodies'exactly cancel each other. Thus a spacecraft

placed at this point would, theoretically, not move for all time. Of

course, perturbations in the vehicle's position induced by outside forces,

such as the solar wind, will cause it to leave the neutral point and even-

tually accelerate towards the body producing the stronger of the unbalanced

gravitational forces.

The heliocentric S/C will be placed in an orbit about the

earth-sun libration point which is perpendicular to the earth-sun center

line. If it were placed on the libration point, reception of telemetry

from the spacecraft would be made impossible due to solar noise entering
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the main beam of the earth receiving antenna.. For this reason the "halo"

orbit will be large enough so that any solar noise enters the ground system

only by way of antenna side lobes which'are controlled so as not to signi-

ficantly contribute to the overall receiving system noise temperature.

Figure 2.3 shows a sketch of the IME Heliocentric spacecraft

with Figure 2.4 showing the orbit concept together with the Earth-Sun

libration points.

2.4 REPORT OBJECTIVES

2.4.1 TASK 1 OBJECTIVES

The primary purpose of the contract is to study the coding

aspects of IME/Mother/Daughter and Heliocentric missions. It is thus

imperative that a power budget analysis be performed, an optimum adjustment

be made in available parameiers, and the best use of system components be

made. This results in the amount of coding gain needed and subsequently in

the impact of the various coding systems on the network.

In this task the budget and tradeoffs alluded .to above have

been performed. The analysis proceeded as follows. A worst case and best

case link calculation was determine-d for each spacecraft. The best case

used all the system components and parameters in such a way as to enhance

the margins available at various points throughout the link. As an example

of the thought processes involved here, the most antenna gain was used

rather than the least, i.e., 85 foot over 30 foot dishes, medium gain

directional on the spacecraft over the omni, etc.; the least circuit losses

were used; etc. It should be mentioned that care was taken not to be

optimistic to the point of unrealistic in choices of parameters. The best
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case is considered plausible in that system parameters and components can

be chosen to give this case under normal operating conditions. It should

also be noted in addition, that there may be times when certain components,

such as the 85 foot dish, may not be available and so a "less than best"

case must be used. In summary, the best case merely uses the best combin-

ation of subsystems, etc. to enhance the link performance while it is in

a configuration favorable to the mission.

The worst case, on the other hand, started off as the worst

use of all systems in the link (assuming all could be employed). As the

analysis progressed certain limitations were reached. At these points

tradeoffs were made so that the limitation was removed. For example, the

30 foot dish was replaced by the 85 foot dish, or a lower bit rate was

used. By continuing in this manner, the minimum operational worst case

system was obtained together with conclusions and recommendations derived

as a result of the tradeoffs. The above rationale will become clear as

the report develops.

The main vehicle for budgeting the power in this report will

be a series of link calculation charts. As each limitation, referred to

above, is reached a compromise is made and the old chart is superseded by

a new chart with the compromise reflected within it! Finally a chart is

presented which supersedes all previous charts and shows the optimum choice

of parameters and subsystems which have resulted from the aggregate of all

the individual compromises made through the report.

The appropriate value is changed and marked by a "t" for clarity on the
updated chart.
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It is the belief of the author that this hands-on approach will

let the reader follow the thoughts of the designer as he progressed through

the task.

It should also be noted that due to the large number of para-

meters in the system, the highest bit rate was assumed, i.e., all other

parameters were traded-off before the bit rate was compromised. Lowering

the bit rate would lessen the strain on the link and allow "sub-optimum"

network components to be used. This will be discussed later.

2.4.2 TASK 2 OBJECTIVES

A major result of the Task 1 study(1) was that a coding gain of

at least 5 dB was desirable in order to support the IMEMD/H missions. The

full gain was needed for the Heliocentric spacecraft when its "halo" radius

was at a minimum thereby allowing close to 10 dB degradation in the signal to

noise ratio (SNR) due to solar noise entering the antenna beam. Less coding

gain was needed in other configurations, however, if the full 5 dB was used

then this allowed greater flexibility in the choice of ground station equip-

ment, e.g., smaller diameter antenna or an uncooled rather than cooled para-

metric amplifier in the front end system.

The primary objective of this task is to provide the

background material necessary to confidently recommend a complete forward

error control system which will result in a 5 dB coding gain. The way that

this is done is to study convolutional coding theory in general (other forward

error control schemes such as Reed-Solomon(7)(8)(9) or Hamming codes

were not considered since convolutional codes are far superior when applied

to a space channel) and then to study the practical implementation factors

of a coding system design.

The solar noise data was supplied by GSFC.
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The important outputs of this task are the design of a maximum

likelihood decoder and the design of a sequential decoder with complexity

taken into account. Having done this a.tradeoff was made to arrive at a

recommended decoder for the missions. The tradeoff was based upon many

factors; included among these were:

o complexity of decoder

o cost of decoder

o burst error recovery factors (for decoding at GSFC)

o network interface complexity

o error rate versus SNR characteristics

o synchronization factors.

Used in the final tradeoff was a method found in reference 10

which looks at the complexity of the decoders in terms of "complexity bits."

These indicate storage and/or computation requirements of the decoder in

question.

2.4.3 TASK 3 OBJECTIVES

(1)(11)
In the previous two tasks the problem of providing good

quality telemetry data from the IMEMD/H spacecraft was considered. As a

result of these studies it was found that, due to low signal to noise ratios

available at the ground stations, at least a 5 dB coding gain was needed

in the downlink. It was also recommended that a constraint length seven (7),

rate 1/2 convolutional encoder be placed aboard the spacecraft

and that the received coded information be decoded using a decoder imple-

menting the maximum likelihood (Viterbi) algorithm in order to achieve the

needed gain. Several reasons were given for this choice, among which were

the low cost (-$5000) per decoder, the provision for handling higher data
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Srates in future missions without any modification to the station, the better

synchronization properties of the Viterbi algorithm, and the graceful

degradation in error rate versus input signal to noise.

Having arrived at the decoding algorithm to be used via the

preceeding tasks, the third. task will answer the following questions:

o Is real or non real time decoding feasible at the ground

station?

O Should software or hardware be used to implement the

algorithm?

o What is the impact on the station computer for a software

implementation?

o Should th e decoding be done at the ground stations themselves

or should it be done at some central location, such as Goddard
Space Flight Center, after the received baseband has been
transmitted via NASCOM?

o What are the cost factors involved with the above schemes?

o What is the station impact?

o What is the optimum system?

In order to answer these questions five systems were set up

which "in theory" could implement the telemetry/codec scheme previously

settled upon. By "in theory" it is meant that if all practical problems

were ignored, such as bit slippage in a bit synchronizer at low signal to

noise ratios, or quantized block resynchronization after parallel to serial

and serial to parallel conversion, or limited tape recorder response, then

the system was capable of presenting the experimenter with quality data.

In the course of this task the practical factors of the systems

will be "cranked in," thereby eliminating some altogether and hopefully
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arranging the rest in a list of decreasing optimality. Optimality here

means the system which will do the best job theoretically while being cost

effective and also practical to implement.

Throughout the task the 1975-1977 STDN will be assumed with

the bulk of the information drawn from reference 34. In this time frame

the network should have settled into a reasonably stable configuration and

Stadac I and Stadac II should be in operation. It should be noted that the

network in 1975 will be more sophisticated than at present with such things

as "third generation" soft bit synchronizers in the field and more wideband

lines available.

Each of the five systems mentioned above will be analyzed on a

block by block basis thereby pinpointing the weak links of the system and,

if such is the case, isolate the reason for rejecting the overall system.

As the material is developed it is hoped that a clear understanding of the

"real world" factors in designing a codec system will be obtained. This is,

in the author's opinion, one of the most important goals of. task 3, for

theory is fine as far 6s it goes, but unless the hardware and/or software

can be built, and unless network personnel and project experimenters can be

convinced that the theory does indeed produce the promised results, there is

little hope for allocations in the network budgets.

In closing this section, then, the present task really comes

down to the last question stated above, namely, what is the optimum system
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for receiving coded telemetry data at the ground stations and delivering

experimental data to the network users, where optimality weighs:

o Quality of the output data

o Availability of equipment

o System cost

o Network loading

o System complexity

o System reliability.
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3.0 DISCUSSION AND RESULTS

This section of the report present the results of the three

tasks set forth by the statement of work in the contract together with any

discussion, analysis, and technical material needed to support them. The

present section is broken down into three major subsections, each of which

are the discussion and results of the individual tasks.

3.1 TASK 1 DISCUSSION AND RESULTS

In this section of the report a power budget for the IME

Mother Daughter and the IME Heliocentric mission will be presented. The

discussion will follow the exact line of reasoning which was used to

arrive at the results shown in the following pages. Charts, equations,

and figures will be interlaced with the text to clarify and demonstrate

conclusions and recommendations.

The coding aspects of this report require a prediction of the

total power available in the downlink together with the allocation of power

among the PN ranging signal, the carrier, and the telemetry.

Referring to Figure 3.1, the modes of operation for both

missions are as follows.

Case A: Ranging only directly through the medium gain antenna

Case B: Telemetry only directly through the medium gain antenna

Case C: Ranging and Telemetry diplexed through the medium gain
antenna

Case D: Ranging and Telemetry subcarrier directly through the
medium gain antenna

3-1



Receiver #1 Transmitter
# 1

Hemispheric
Antenna #1

PLL #1

F XTAL
emosc#spheri1

TLM DiplexerMedum
SOURCE Gain

OSC #2

PLL #2

Hemispheric
Antenna #2

2 f
Receiver #2 oTransmitter

#2

FIGURE 3.1 IME COMMUNICATIONS BLOCK DIAGRAM



Command

CABLE/Subcarrier CABLE/XPDR LIMITER/

POLARIZ CONN VSWR NOISE PHASENT

MUX XMTR LOSSLOSS GAIN

. LSS LOSS OS TEMP I DEMOD
NULL XTR VSR CABLE/ AM POITIN

-I ANT a LOSS - CONN E ---- XMTR 4 MUX

GAIN LOSS

2300 MHz Tlm

subcarrier

S/C ANTR FRE GRD PM GRA

NULLATM . P I NATMN

ANT OSS.CON XMT MU

POINTING SPACE -- ABSORB ANT POINTING-
LOSS  LOSs-s GA IN L

GRD RCABLE/ W CBL/
RANGING 4-_iSYS NOISEr_ VSWR _ CONN OLAS

SYSTEM E LOSS LOSS
TEMP LOSS

Range, Range Rate

DATA -SatelliteROCESSOR 'Position

Angle Data
from Antenna

FIGURE 3.2 RANGING SYSTEM BLOCK DIAGRAM

3-3



SPACE ABSORP- ANT APOINTING AE POLARIZ
LOSS

PKBPF PRIME GRD-REC

DE K Df = 1.024 __ CARR I ER _ SYS VSWR

DEMOD TEMP

CONVOL DATA DTSEDECODERCODER FORMATER ENCODER NASCOM

(OPTIONAL) I

I Alternate System

- DEC DER CONVOL DTS
DECODE DECODER DECODER

I [_I(OPT I ONAII )

To Tape To Tape
Rcdr or Rcdr
Nascom

FIGURE 3.3 TELEMETRY SYSTEM BLOCK DIAGRAM (SUBCARRIER OPTION)

3-4



T CONVOL S/P PM CABLE/ VSWR
ENCODER ENCODER XMTR CONN LOSS

• LOSS

2300 MHz

GRD REC ATM FREE S/C.ANT S/C XMT
ANT ABSORP- SPACE PO I NT I NG ANT
GAIN TION LOSS LOSS GAIN

GRD ANT GRD REC PRIME
NTI G - POLARIZ VSWR -- S NOSECARRIEROI LOSS LOSS fYS NOISE PHASE

LOSS TEMP
DEMOD

NASCO OT AT OV /

S NASCOM DTS DATA CONVOL S/P
ENCODER FORMATER DECODER DECODER

Alternate System

S DTS CONVOL
DECODER DECODER

L -- _ _ _-'- _ _ _i J

To Tape To Tape
Rcdr Rcdr or

Nascom

FIGURE 3.4 TELEMETRY SYSTEM BLOCK DIAGRAM (PRIME CARRIER OPTION)

3-5



Case E: Ranging only directly through the hemispherical antenna

Case F: Telemetry only directly through the hemispherical antenna

The above modes can be generalized with respect to link calculations as

reflected in Figures 3.2, 3.3, and 3.4.

Using these figures as a guide link calculation charts were

derived. Having determined the parameters needed, a computer program was

written which when fed with the parameters of the system for each case

given above outputted the data necessary to make the appropriate tradeoffs.

The program is general enough to handle more than the above modes and

can be readily modified to be used with other missions (see Appendix D).

3.1.1 UPLINK POWER BUDGET ANALYSIS

At this point the first chart will be introduced. It will be

noted that each line has an item number. These numbers will be referred

to continually throughout the discussion. Also changes in the charts will

reflect the conclusions w-ithin the report. This two way referencing will

allow the reader to either follow the text and refer to the chart or

vice versa, thus adding flexibility to the discussion. This it is hoped

will increase the usefulness of the report.

Consider Table 3.1. Item 1 is the ground transmitter power

which is available for the uplink command/ranging signal. The Unified

S-band stations have 20 KW maximum. In dBm, then, the power is 73 dBm.

Note that any less available power than that stated would be considered

a degraded operational status for the supporting stations. It should be

mentioned that due to the frequency diversity which can be employed for
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ITEM ITEM DESCRIPTION IME-H. BEST CASE IME-H. WORST CASE IME-M.-D. BEST CASE IME-M.-D. WORST CASE

1. Grd Xhtr Power (USB 20KW) (dbm) 73.0 73.0 73.0 73.0
2. Xmtr to Antenna Xmssn Losses (db) -0.1 -0.5 -0.1 -0.5
3. Grd Xmtr Antenna Gain (85'-52.5db, 30'-43db) (db) 52.5 43.0 52.5 43.0
4. Path Loss (H.-1.5x10*6K14, M.-D.-1.5x10*5Km, 2.1GHz) (db) -222.1 -222.1 -202.1 -202.1
5. Power at S/C Rcvr Antenna (dbm) -96.7 -106.6 -76.7 -86.6

6. S/C Rcvr Antenna Gain (Omni) (db) 2.0 -3.0 2.0 -3.0
7. Antenna to Rcvr Xmssn Losses (d6) -1.0 -2.0 -1.0 -2.0

8. Power at S/C Rcvr Input (5(u)) (dbm) -95.7 -111.6 -75.7 -91.6

9. Uplink Solar Noise Factor (db) 0.0 0.0 0.0 0.0

10. S/C OcvrNoise_Density (N(ou)) (db/Hz) -160 -166 1 -1517 -157.8
11. Uplink Total (S(u)/N(ou)) (db-Hz) 64.9 54.5 76.0 66.2

TABLE 3.1A IME LINK CALCULATION (RISING DENSITY)

ITEM ITEM DESCRIPTION IME-H. REST CASE IME-H. WORST CASE IME-M.-0. BEST CASE IME-M.-0. WORST CASE

1. Grd Xmtr Power (USB 20Q.) (dbm) 73.0 73.0 73.0 73.0
2. Xmtr to Antenna Xmssn Losses (db) -0.1 -0.5 -0.1 -0.5
3. Grd Xmtr Antenna Gain (85'-52.5db, 30'-43db) (db) 52.5 43.0 52.5 43.0
4. Path Loss (H.-1.5x10*6K4, M.-D.-I.5xO*5Km. 2,10Hz) (db) -222.1 -222.1 -202.1 -202.1
5. Power at S/C Rcvr Antenna (dbm) . -96.7 -106.6 -76.7 -86.6
6. S/C Rcvr Antenna Gain (Omni) (dh) 2.0 -3.0 2.0 -3.0
7 Antenna to Rcvr Xmssn Losses (db) -1.0 -2.0 -1.0 -2.0

8. Power at S/C Rcvr Input (S(u)) (dhm) -95.7 -111.6 -75.7 -91.6

9. Uplink Solar Noise Factor (db) 0.0 0.0 0.0 0.0
10. S/C Rcvr Noise nOnsity (N(ou)) (dbm/Hz) -166.8 -166.8 -166.8 -166.8

11. UDlink Total (S(u)/N(ou)) (db-Nz) 71.1 55.2 91.1 75.2

TABLE 3.1B IME LINK CALCULATION (NON RISING DENSITY)



the ranging channel the power could be 70 dBm per channel, however, once

the strong channel is chosen the full power of 73 dBm is available for

the uplink.

Item 2 is an estimate of the transmission losses incurred

between the transmitter and the antenna; these include diplexer loss, cable

loss, etc.

Item 3 is the gain of the-command transmitting antennas. The

85 foot parabolic dish has a gain of 52.5 dB at 2.1 GHz, and the 30 foot

parabolic dish has a gain of 43 dB at 2.1 GHz. If both were available then

the 85 foot would be best case and the 30 foot would be worst.

Item 4 is the free space path loss. For IME-Mother-Daughter

the apogee is 1.5 x 105 km. Using the equation( 12 )

LFS = (4f)2 d2/X2, (3.1)

where LFS is the loss in free space between isotropic antennas, d is the

distance in meters between the antennas, and X is the wavelength in meters

of the electromagnetic wave propagating through the medium, the loss is

[(4n) 2 (1.5 x 108)2]/[(2.99793 x 108/2.1 x 109) 2J

= 10 + 2 0 2 1 (+202.1 dB). (3.2)

For IME-Heliocentric the same reasoning with a distance of

1.5 x 106 km instead of 1.5 x 105 km gives a loss of +222.1 dB.

Item 5 is simply the sum of Items 1 through 4 and gives the

power level appearing at the spacecraft receiving antenna.
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Item 6 is the spacecraft receiving antenna gain. One half of

the pattern for this antenna is shown in Figure 3.5 (actually two of these

(13)
patterns will make up the overall receiving antenna). The maximum gain

is 2 dB, whereas the minimum gain appearing at the junction of the two

halves is -3 dB. These are the best and worst case respectively.

Item 7 estimates the spacecraft transmission line losses at

-1 dB and -2 dB, best and worst case, respec+tvely.

Item 8 is the sum of Items 5, 6,and 7 and is the power level

appearing at the input to the spacecraft receiver, i.e., the ranging

transponder in this instance.

Item 9 is the uplink solar noise factor. Due to the large

solid angle seen by the spacecraft hemispheric antennas, i.e., wide field

of view the uplink solar noise is negligible and is therefore assumed to

be 0 dB.

Item 10 is the transponder noise density. Some discussion

is in order here. Per reference 14, the noise density of an Apollo type

of transponder which could be used in the IME missions has a rising charac-

teristic as shown in Figure 3.6. This increase in noise density is due to

the AGC circuits internal to the transponder. .As can be seen in the figure

at an input signal level of -90 dBm the slope becomes almost 1:1 and constant

thereafter. This is very degrading in terms of signal margin and negates

the high command power transmitted from the ground.

With the above discussion in mind, the curve in Figure 3.6 can

be used to find the noise density required in Item 10 by translating the
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threshold value from -175.7 dBm/Hz as shown to -166.8 dBm/Hz (1500 0K),

which is applicable to the spacecraft transponder, and then using the

received input level to read off the noise density. For example, the

power level best case for IME-Heliocentric is -95.7 dBm (Item 8). The

curve gives -169.5 dBm/Hz. Since the difference in thresholds is 8.9 dB

(+175.7 - 166.8), the appropriate noise density is -169.5 dBm/Hz + 8.9 dB

= -160.6 dBm/Hz. This value is shown as the best case on IME-Heliocentric

Item 10 for the rising density type of transponder. In the computer program

a curve fit was done and the above rationale was used.

If the rising noise density were not present the density would

be that given at threshold, i.e., -166.8 dBm/Hz, that is, 6.2 dB better!

Table 3.1 gives the results for rising density and no rise type receivers.

Since the present plans are to use a non rising densitytype of transponder

on the IME missions the rest of the charts will assume this. The inclusion

of the rising density type of transponder in the first chart was to show

how degrading its use would be in the IME missions.

Item 11 is the sum of Item 8 and Item 9 minus Item 10 and is

the uplink total signal-to-noise ratio with the noise normalized to a one

hertz bandwidth, i.e., signal-to-noise density. Out of this total must

come a certain amount for the ranging code and an amount for the command

signal. This is implemented by subtracting off a modulation factor. The

resultant is the power ratio after modulation has taken place.

At this point the first observation/tradeoff will be made.

Consider Item 11 of the IME-Heliocentric mission for the no rise case.

Its value is 55.2 dB-Hz. As stated above this is the amount of signal-
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to-noise density available prior to modulation considerations. If all

the power were put into the ranging sidebands 55.2 dB-Hz would apply.

This, of course, cannot happen due to the need for carrier power to lock

onto and command power to command the spacecraft, however, 55.2 dB-Hz

would be the absolute upper limit of ranging ratio that could be used.

The point is that if 55.2 dB-Hz is not enough to do the job, then there

is no hope of doing it with any less power ratio.

Now for transponding purposes it is desirable to have as much

S/No as possible so that the uplink noise is negligible in the overall

turnaround. This is usually the case due to high ground antenna gain and

transmitter power. In the case of the Item in question, however, this

is not true.

The ranging spectrum (Figure 3. 7) is such that at least twice

the chip rate of the code must be passed, i.e., 2 x 1 MHz, thus in dB the

passband is 63 dB-Hz. The predetection signal-to-noise ratio is then

55.2 dB-Hz - 63 dB-Hz, i.e., -7.8 dB. This large negative margin is due

to the "worst case" use of the 30 foot dish together with the null in the

spacecraft receive antenna (the rest of the factors are secondary).

Suppose an 85 foot dish were used. The improvement would be

(52.5 dB - 43 dB), i.e., 9.5 dB. Table 3.2 shows what the result of the

added gain would be. Realizing that some improvement is enjoyed in

coherent detection, it appears that there is now a chance of obtaining

a positive SNR prior to modulating the downlink carrier.

The conclusion is that for the IME-Heliocentric mission uplink

the USB stations must be used with its 85 foot dish.
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At this point in the discussion Table 3.1 is superseded by

Table 3.2, i.e., Table 3.1 is discarded in favor of Table 3.2. Items

between now and the next tradeoff are those of Table 3.2.

The uplink signal is bandpass limited before demodulation,

therefore, as is well known, either it is enhanced, unchanged, or degraded

depending upon the prelimiter signal-to-noise ratio. Considering the

limiter bandwidth to have a nominal value of 2 MHz (63 dB-Hz) the signal-

to-noise densities of Item 11 give the limiter factors of Item 12. For

example, the IME-Mother-Daughter best case S/No corresponds to an SNR of

28 dB (91.1 dB-Hz - 63 dB-Hz) and thus gives a 3.0 dB enhancement.

Table 3.3 lists the output SNR versus input SNR for the ideal bandpass

(15)
limiter.

As can be seen from Table 3.2, the spacecraft using an omni-

direction antenna can be supported with the USB stations, and the downlink

ranging becomes essentially noisefree in all cases except the IME-

Heliocentric worst case where it is marginal at 1.6 dB.

Getting back now to the other cases, Item 13 reflects the

modulation loss incurred on the uplink by using indices of 0.8 and 0.9

for ranging and command, respectively, per reference 16.

Item 14 is a result of coherent demodulation, which only looks

at the in-phase noise and eliminates the quadrature noise, and the filtering

involved.

Item 15 is the sum of items 11 through 14 minus the RF band-

width of 63 dB-Hz.
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ITEM ITEM DESCRIPTION IME-H. BEST CASE IME-H. WORST CASE IME-M.-D. BEST CASE ME-M.-. WORST CASE

1. Grd Xmtr Power (UIISB 20KW) (dbm) 73.0 73.0 73.0 73.0

2. Xmtr to Antenna Xmssn Losses (db) -0.1 -0.5 -0.1 -0.5

3. Grd Xmtr Antenna Gain (85'-52.5db, 30'-43db) (db) 52.5 52.5t 52.5 43.0

4. Path Loss (H.-1.5x10*6K' M.-D.-1.5x10*5Km, 2.10Hz) (db) -222.1 -222.1 -202.1 -202.1

5. Power at S/C Rcvr Antenna (dbm) -q6.7 -97.1t -76.7 -86.6

6. S/C Rcvr Antenna Gain (Omni) (dbJ 2.0 -3.0 2.0 -3.0

7. Antenna to Rcvr Xmssn Losses (db) -1.0 -2.0 -1.0 -2.0

8. Power at S/C Rcvr Input (S(u)) (dbm) -95.7 -102.1t -75.7 -91.6

9. Uplin-k Solar Noise Factor (db) 0.0 0.0 0.0 0.0

10._ S/C Rcvr Noise Density (N(ou)) (dbm/Hz) -166.8 -166.8 -166.8 -166.8

11. Ulink Total (S(u)/N(ou)) (db-Hz) 71.1 64.7t 91.1 75.2

12. Bandnass Limiter Gain/Loss Factor (db) 2.6 1.6 3.0 2.8

13. Uolink Ranging Factor (db) -4.7 -4.7 -4.7 -4.7

14. Coherent Demodulation Factor (W(rf)/W(v)) (dh) 3.0 3.0 3.0 3.0

15. Premodulation Signal to Noise Ratio (db) 9.0 1.6 29.4 13.3

16. Uplink Ranging Threshold (dh) 0.0 0.0 0.0 0.0

17. Uplink Ranging Marqin (dh) 9.0 1.6 29.4 13.3

18. Ranging Low Pass Bandwidth (db-Hz) 60.0 60.0 60..0 60.0

19. S/C Xmtr Power (into Xmssn Line) (dbm)
20. Xmtr to Antenna Xmssn Losses (db)
21. S/C Antenna Gain (Medium Gain Directional, Omni) (db)
22. S/C Antenna Pointing Loss (db)
23. Path Loss (See Item 4, 2.3GHz) (db)
24. Power at Grd Rcvr Antenna (dbm)

(J 25. Grd Rcvr Antenna Gain (See Item 3) (db)
26. Antenna to Rcvr Xmssn Losses (db)
27. Power at Grd Rcvr Input (S(d)) (dbm)

> 28. Downlink Solar Noise Factor (db)
29. Grd Rcvr Noise Density (N(od)),(Maser, Cool P., Hot P.)(dbm/Hz)
30. Downlink Total (S(d)/N(od)) (db-Hz)
31. Downlink Ranging Factor (dh)
32. Downlink Carrier Factor (db)
33. Downlink Telemetry Factor (dh)

34. Downlink Ranging (S(rd)/N(od)) (db-Hiz)
35. Downlink Carrier (S(cd)/Nod)) (db-Hz)
36. Downlink Telemetry (S(td)/N(od)) (db-Hz)
37. Downlink Effective Ranging (S(erd)/N(od)) (db-Hz)
38. Grd Rcvr Ranging Threshold (Mark 1A) (db-Hz)
39. Grd Rcvr Carrier Threshold (dh-Hz)
40. Grd Rcvr Telemetry Threshold (10*-5 BEP) (db-Hz)
41. Ranging Margin (db)
42. Carrier Margin (dh)
43. Telemetry 'largin (dh)
44. Coding Gain (dh)
45. Telemetry Margin with Coding (db)

TABLE 3.2 IME LINK CALCULATION



INPUT SNR (dB) OUTPUT SNR (dB)

-20.0 -21.00
-19.0 -19.98
-18.0 -18.97
-17.0 -17.95
-16.0 -16.92
-15.0 -15.89
-14.0 -14.85
-13.0 -13.80
-12.0 -12.74
-11.0 -11.67
-10.0 -10.59
-9.0 -9.48
-8.0 -8.36
-7.0 -7.22
-6.0 -6.06
-5.0 -4.88
-4.0 -3.69
-3.0 -2.48
-2.0 -1.25
-1.0 -0.02
0.0 1.20
1.0 2.43
2.0 3.64
3.0 4.84
4.0 6.02
5.0 7.18
6.0 8.32
7.0 9.44
8.0 10.54
9.0 11.63
10.0 12.70
11.0 13.76
12.0 14.81
13.0 15.85
14.0 16.88
15.0 17.91
16.0 18.93
17.0 19.94
18.0 20.96
19.0 21.97
20.0 22.98

TABLE 3.3 BANDPASS LIMITER ENHANCEMENT/DEGRADATION
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Item 16 was chosen as a minimum SNR for the downlink ranging

signal. A 10 dB SNR is desirable but 0 dB is considered minimum.

Item 17 is the margin available just prior to modulating the

downlink carrier. Anything over 10 dB will result in an almost perfect,

although time delayed, replica of the originally transmitted ranging code.

As can be seen from this item all downlink ranging signals are essentially

noisefree with the lone exception of the IME-Heliocentric worst case. In

this case the modulating waveform is ranging plus noise. This will impact

on the final ranging SNR and will be discussed later in Item 37.

A general comment would be that the worst case is not likely

to occur in the Heliocentric mission since it is stabilized and as such

will, on one of its channels, have the peak of the antenna pattern pointed

toward the earth. In case of a malfunction, however, a tumbling space-

craft could encounter this condition.

3.1.2 DOWNLINK POWER BUDGET ANALYSIS

In this section the more relevant, in terms of the coding study,

part of the IMP power budget will be detailed. The only reason for per-

forming the uplink analysis was to obtain the "effective" ranging SNR.

This will be discussed fully later in connection with Item 37.

Refer now to Tables 3.4, 3.5, and 3.6 which are merely Table 3.2

with the downlink factors added. In Table 3.4 the two transponders are

diplexed into the medium gain antenna; as such the total power available

is 3 dB lower than the maximum per channel. This is reflected in Item 19

on Table 3.4. In the other two tables there i*s no diplexer and full power

is utilized.
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Note that Cases A and B do not appear. This was done for

design purposes, i.e., Cases A and B can be derived from Case C by adding

3 dB to the transmitter power. It was felt that the added 3 dB should be

used for margin when the link was weak. With this in mind Case C was

used for the optimization of the link parameters.

Item 20 is an estimate of the best (-1.5 dB) and the worst

(-3 dB) transmission losses that can be expected from the transmitter to

the antenna on the spacecraft.

Item 21 is the transmitting antenna gain. Cases C and D use

the medium gain antenna (9 dB) while Cases E and F use the hemispheric

antenna for a peak of 2 dB and a null of -3 dB.

Item 22 reflects the possible pointing loss for the antennas.

When the hemispheric antenna is used there is no pointing loss (actually

it is incorporated into the gain) while the medium gain can suffer 2 dB

loss (chosen arbitrarily).

Item 23 is the path loss at the transmitting frequency of 2.3

GHz and is about 1 dB higher than the uplink.

Item 24 is the sum of items 19 through 23 and is the received

signal power available at the ground antenna.

Item 25 is the ground antenna gain for the 85 foot dish (52.5 dB)

or the 30 foot dish (43 dB).

Item 26 is an estimate of the transmission losses.
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Item 27 is the received signal power, i.e., the sum of Items

24, 25, and 26.

Item 28 is the downlink solar noise factor. This factor is a

result of the ground receiving antenna looking towards the sun. Per

information received by the author from Goddard personnel the minimum halo

orbit radius of the Heliocentric mission will range from 40,000 km to

60,000 km.. This converts to angle offsets from the earth-sun line of

1.50 to 2.30. Preliminary data taken by Goddard shows that the increase

in system noise density will be -11.2 dB for the 40,000 km radius and

-9.8 dB for the 60,000 km radius as compared with the quiet sky readings.

Since a smaller radius conserves fuel it was assumed as a first

iteration and is reflected in Item 28 of Tables 3.4, 3.5, and 3.6. The

solar noise factors away from the sun are assumed to be negligible.

Item 29 is the system noise density of the following choices

(17)
of ground receiver front ends: maser (700 K), cooled parametric amplifier

(960 K), or uncooled parametric amplifier (170 0 K). The maser is only avail-

able with the 85' receiving antennas, whereas the cooled and uncooled

paramp are available with the 30' dishes. The noise densities of Item 29

are for a quiet sky.

By the IME mission time frame all sites will have multifunctional

receivers, but even if USB types were used the received signal power is so

low that the rising noise density is not applicable, i.e., the receiver is

at threshold. The noise densities are then "KT", where "K" is Boltzman's

constant (-198.60 dBm/ K-Hz). It should be mentioned here that the above

noise temperatures for the maser, etc., include antenna temperature.

3-18



ITEM ITE'I DESCRIPTION IME-H. BEST CASE IME-H. WORST CASE IME-M.-D. BEST CASE IME-M.-D. WORST CASE

1. Grd Xmtr Power (USB 20101) (dbm) 73.0 73.0 73.0 73.0

2. Xmtr to Antenna Xmssn Losses (db) -0.1 -0.5 -0.1 -0.5

3. Grd Xmtr Antenna Gain (85'-52.5db, 30'-43db) (db) 52.5 52.5 52.5 43.0
4. Path Loss (H.-I.5x10*61(, M.-D.-1.5x10*5Km~, 2.10Hz) (db) -222.1 -222.1 -202.1 -202.1
5. Power at S/C Rcvr Antenna (db) . -96.7 -97.1 -76.7 -86.6

6. S/C Rcvr Antenna Gain (Omni) (db) 2.0 -3.0 2.0 -3.0

7. Antenna to Rcvr Xmssn Losses (db) -1.0 -2.0 -1.0 -2.0
8. Power at S/C Rcvr Input (S(u)) (dbm) -95.7 -102.1 -75.7 -91.6

9. Uplink Solar Noise Factor (db) 0.0 0.0 0.0 0.0

1 SL C Rcvr Noise Density N(ou)u) (dbm/Hz) -166 8 -166,8 -166.8 -166.8
11. Uplink Total (S(u)/N(ou)) (db-Hz) 71.1 64.7 91.1 75.2
12. Bandpass Limiter Gain/Loss Factor (db) 2.6 1.6 3;0 2.8
13. Uplink Ranging Factor (db) -4.7 -4.7 -4.7 -4.7
14. Coherent Demodulation Factor (W(rf)/W(v)) (db) 3.0 3.0 3.0 3.0
15. Premodulation Signal to Noise Ratio (dh) 9.0 1.6 29.4 13.3

16. Uplink Ranging Threshold (db) 0.0 0.0 0.0 0.0

17. Uplink Ranging Margin (db) 9.0 1.6 29.4 13.3
18. Ranging Low Pass Bandwidth _ (db-Hz) 60.0. 60.0 60.0 60.0

19. S/C Xmtr Power (into Xmssn Line) (dbm) 31.0 31.0 27.0 27.0

20. Xmtr to Antenna Xnssn Losses (dh) -1.5 -3.0 -1.5 -3.0

21. S/C Antenna Gain (Medium Gain Dilrectional, Omni) (db) 9.0 9.0 9.0 9.0

22. S/C Antenna Pointing Loss (db) 0.0 -2.0 0.0 -2.0

23. Path Loss (See Item 4, 2.3rHz) -- _ _(db) -223.1 -223.1 -204.9 -204.9

24. Power at Grd Rcvr Antenna (db)-- -184.6 -188.1 -170.4 -1 3-i

25. Grd Rcvr Antenna Gain (See Item 3) (db) 52.5 43.0 52.5 43.0

26, Antenna to Rcvr Xmssn Losses (db) -0.2 -0.5 -0.2 -0.5

C 27. Power at Grd Rcvr Input (S(d)) (dbm) -132.3 -145.6 -118.1 -131.4

> 28. Downllnk Solar Noise Factor (db) 0.0 -11.2 0.0 0.0

29. Grd Rcvr Noise Density (N(od)),(Maser, Cool P., Hot P.)(dbm/Hz) -180.1 -178.8 -176.3 -180.1 -178.8 -176.3 -180.1 -178.8 -176.3 -180.1 -178.8 -176.3

30. Downlink Total (S(d)/N(od)) (db-Hz) 47.8 .... 465.5 62.0 60.7 58.2 48.7 47.4 44.9

31. Downlink Ranging Factor (db)
32. Downlink Carrier Factor (db)
33. Downlink Telemetry Factor (db)
34. Downlink Ranging (S(rd)/N(od)) (db-Hz)
35. Downlink Carrier (S(cd)/Nod)) (db-Hz)
36. Downlink Telemetry (S(td)/N(od)) (db-Hz)

37. Downlink Effective Rannin_ (S(erd)/N(od)) (db-Hz)

38. Grd Rcvr Ranging Threshold (Mark 1A) (d-H4z) 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0

39. Grd Rcvr Carrier Threshold (db-Hz) 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0

40. rdRcv LTlemetry Threshold (10*-5 BEP) (db-lz) 44.7 ____4.7 4.7_ 447__ 44.7_ 44.1_ 58 53.8 53.. 53.8 5398
41. Ranging Margin (dh)
42. Carrier Margin (db)
43. Telemetry Margin (dh)
44. Coding Gain (db)
45. Telemetry Margin with Coding (db)

TABLE 3.4 IME LINK CALCULATION (CASE C)



ITEM ITEM DESCRIPTION IME-H. BEST CASE IME-H. WORST CASE IME-M.-D. REST CASE IME-M.-D. WORST CASE

1. Grd Xmtr Power (USS 20K.) (dbm) 73.0 73.0 73.0 73.0
2. Xmtr to Antenna Xmssn Losses (dh) -0.1 -0.5 -0.1 -0.5
3. Grd Xmtr Antenna Gain (85'-52.5db, 30'-43db) (db) 52.5 52.5 52.5 43.0
4., Path Loss (H.-1.5x10*6I10, M.-D.-1.5x10*5Km, 2.10Hz) (db) -222.1 -222.1 -202.1 '-202.1
5. Power at S/C Rcvr Antenna (dbm) -96.7 -97.1 -76.7 -86.6
6. S/C Rcvr Antenna Gain (Omni) (db) 2.0 -3.0 2.0 -3.0
7. Antenna to Rcvr Xmssn Losses (dh) -1.0 -2.0 -1.0 -2.0
8. Power at S/C Rcvr input (S(u)) (dhm) . 95.7 -102.1 -75.7 -91.6
9. Uplink Solar Noise Factor (db) 0.0 0.0 0.0 0.0
10. S/C Rcvr Noise Density (!l(ou)) (dbm/Hz) -166.8 -166.8 -166.8 -166.8
11. Uplink Total (S(u)/N(ou)) (db-Hz) 71.1 64.7 91.1 75.2
12. Bandpass Limiter Gain/Loss Factor (db) 2.5 1.6 3.0 2.8
13. Uplink Ranging Factor (db) -4.7 -4.7 -4.7 -4.7
14. Coherent Demodulation Factor (ld(rf)/W(v)) (db) 3.0 3.0 3.0 3.0
15. Premodulation Signal to Noise Ratio (db-- 9.0 1.6 29.4 13.3
16. Uplink Raning Threshold (db) 0.0 0.0 0.0 0.0
17. Uplink Ranging Margin (db) 9.0 1.6 29.4 13.3
18. __ Ranging Low Pass Bandwidth (db-Hz) 60.0 60.0 60.0 60.0
19. S/C Xmtr Power (into Xmssn Line) (dbm) . - 34.0 34.0 30.0 30.0
20. Xmtr to Antenna Xmssn Losses (db) -1.5 -3.0 -1.5 -3.0
21. S/C Antenna Gain (Medium Gain Directional, Omni) (db) 9.0 0.0 9.0 0.0
22. S/C Antenna Pointing Loss (dh) 0.0 -2.0 0.0 -2.0
23. Path Loss (See Item 4, 2.3GHz) (db) -223.1 -223.1 -204.9 -204.9
24. Power at Grd Rcvr Antenna (dbm) -181.6 -185.1 -167.4 -170.9

W 25. Grd Rcvr Antenna Gain (See Item 3) (db) 52.5 43.0 52.5 43.0
i 26. Antenna to Rcvr Xmssn Losses (db) -0.2 -0.5 -0.2 -0.5

, 27. Power at Grd Rcvr Input (S(d)) (dbm) -129.3 -142.6 -115.1 -128.4
C 28. Downlink Solar Noise Factor (db) 0.0 -11.2 0.0 0.0

29. Grd Rcvr Noise Density (N(od)),('laser, Cool P., Hot P.)(dbm/Hz) -180.1 -178.3 -176.3 -180.1 -178.8 -176.3 -180.1 -178.8 -176.3 -180.1 -178.8 -176.3
30. Dbwnlink Total (S(d)/N(od)) (db-Hz)- 50.8 49.5 47.0 26.3 25.0 22.5 65.0 63.7 6.1.2 51.7 50.4 47.9
31. Downlink Ranging Factor (db)
32. Downlink Carrier Factor (db)
33. Downlink Telemetry Factor (db)
34. Downlink Ranging (S(rd)/N(od)) (db-Hz)
35. Downlink Carrier (S(cd)/Nod)) (db-Hz)
36. Downlink Telemetry (S(td)/N(od)) (db-Hz)
7L _.-Downlink Effective Ranging (S(ord)./(od)) ... .__ . (db-z)!

38. Grd Rcvr Ranging Threshold (Mark 1A) (db-Hz) 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0
39. Grd Rcvr Carrier Threshold (db-Hz) 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0
40. Grd Rcvr _Telemetry Threshold (10*-5 BEP) (db-Hz) 44.7 44.7 _ 44.7 4 .7 44.7 44.7 53.8 53.8 53.8 53.8 53.8 53.8
41. Ranging Margin (dh)
42. Carrier Margin (db)
43. Telemetry Margin (db)
44. Coding Gain (db)
45. Telemetry Margin with Coding (db)

TABLE 3.5 I1E LINK CALCULATION (CASE D)



ITEM ITEM DESCRIPTION IME-H. BEST CASE IME-H. WORST CASE IME-M.-D. REST CASE IME-M.-D. WORST CASE

1. Grd (mtr Power (UISB 20Kl) (dbm) 73.0 73.0 73.0 73.0
2. Xmtr to Antenna Xmssn Losses (db) -0.1 -0.5 -0.1 -0.5
3. Grd Xmtr Antenna Gain (85'-52.5db, 30'-43db) (db) 52.5 52.5 52.5 43.0
4 Path Loss (H.-1.5x10*6KM, M.-D.-1.5xI0*5Km, 2.1GHz) (db) -222.1 -222.1 -202.1 -202.1
5. Power at S/C Rcvr Antenna (dbm) -%. -97.1 -76.7 -86.6
6. S/C Rcvr Antenna Gain (Omnl) (db) 2.0 -3.0 2.0 -3.0
7. Antenna to Rcvr Xmssn Losses (db) -1.0 -2.0 -1.0 -2.0
8. Power at S/C Rcvr Input (S(u)) (dbm) -95.T -12' - -75.7 -91.6
9. Uplink Solar Noise Factor (db) 0.0 0.0 0.0 0.0
10. S/C Rcvr Noise Density (N(ou)) (dbm/Hz) -166.8 -166.8 -166.8 -166.8
11. Uolink Total (S(u)/N(ou)) (db-Hz) 71- 6-4.7 91.1 75.2
12. Bandpass Limiter Gain/Loss Factor (db) 2.6 1.6 3.0 2.8
13. Uolink Ranging Factor (db) -4.7 -4.7 -4.7 -4.7
14. Coherent Dendlatl Factor (W(rf)/W(v)) (db) 3.0 3.0 3.0 3.0
15. Premodulation Signal to Noise Ratio ' (db) 9.0 1.6 29.4 13.3
16. Uplink Ranging Threshold (db) 0.0 0.0 0.0 0.0
17. Uplink Ranging Margin (db) 9.0 -.6 2Q.4 13.3
18. Ranging Low Pass Bandwidth (db-Hz) 60.0 60.0 60.0 60.0
19. S/C Xmtr Power (into Xmssn Line) (dbm) 34.0 34.0 30.0 30.0
20. Xmtr to Antenna Xmssn Losses (db) -1.5 -3.0 -1.5 -3.0
21. S/C Antenna Gain (Medium Gain Directional, Omni) (db) 2.0 -3.0 2.6 -3.0
22. S/C Antenna Pointing Loss (db) 0.0 1.0 0.0 0.0
23. Path Loss (See Item 4, 2.3GHz) (db) -223.1 .-223.1 -204.9 -204.9
24. Power at Grd Rcvr Antenna (dbm) -188.6 -195.1 -174.4 -180.9

CJ 25. Grd Rcvr Antenna Gain (See Item 3) (db) 52.5 43.0 52.5 4.3.0
1 26. Antenna to Rcvr Xmssn Losses _ (db) -0.2 -0.5 -0.2 -0.5

CD 27. Power at Grd Rcvr Input (S(d)) (dbm) -r36. -152.6 -122.1 -138.4
0 28. Downlink Solar Noise Factor (db) 0.0 -11.2 0.0 0.0

29. Grd Rcvr Noise D0ensty (N(od)),(Maser. Cool P.. Hot P,)(dbm !Hz) -180.1 -178.8 -176.3 -180.1 -178.8 -176.3 -180.1 -178.8 -176.3 -180.1 -178,8 -176,.
30. Downlink Total (S(d)/N(od)) (db-Hz) 43.8 42.5 40.0 16.3 15.0 12.5 58.0 56.7 54.2 41.7 40.4 37.9
31. Downlink Ranging Factor (db)
32. Downllnk Carrier Factor (db)
33. Downlink Telemetry Factor (db)
34. Downlink Ranging (S(rd)/N(od)) (db-lHz)
35. Downlink Carrier (S(cd)/Nod)) (dhb-Hz)
36. Downlink Telemetry (S(td)/N(od)) (rh-llz)
317 wn Lnk-E ct ie-Rann i n ( S(erd)L/Lod31 .. (db-liz)
39. Grd Rcvr Ranning Threshold (Mark IA) (db-1lz) 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0
39. Grd Rcvr Carrier Threshold (db-llz) 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0
40. Grd Rcvr Tat .Lh shold( 105 REP) (d-Hz)__ 44.7 44.7 4 4.7 44.7 44.7 44.7 53.8 53.8 53.8 53.8 53.8 53.8
41. Ranging Margin (db)
42. Carrier Margin (db)
43. Telemetry Margin (db)
44. Coding Gain (db)
45. Telemetry Marqin with Codinn (db)

TABLE 3.6 IME LINK CALCULATION (CASE E OR F)



Item 30 is the total (modulation sidebands and all) signal power

minus the noise densities of Item 29. The values shown are very important

due to the following discussion.

The purpose of this study is to find the telemetry coding impact

on the IME missions. In doing so the required coding gain must be determined,

and so the "optimum" choice of power distribution must be obtained. By

optimum it is meant: that choice of modulation indices which simultaneously

yields the most margin in the cases of ranging, carrier lock, and telemetry. In

this regard a computer program was written which solved for the power drop from

the total signal power versus the ranging modulation index with the telemetry

index as a parameter. The output from the program is listed in Appendix C.

Since the decoder will be used for both missions, the worst case

of both was used to choose the indices.

Prior to choosing the indices the ranging, telemetry, and

carrier thresholds must be found. These are shown in Items 38 through 40.

The ranging threshold (23 dB) was determined by assuming a Mark IA ranging

system.(18) Referring to Figure 3.9, the value of 23 dB was chosen because it

was the threshold for the 12 Hz bandwidth clock loop. It should be noted

that for the manned missions a value of 43 dB-Hz is used, but this was felt

to be far too stringent for the present case.

The carrier loop threshold was chosen to be 30.0 dB-Hz to

provide 12 dB in a noise bandwidth of 60 Hz.
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The maximum telemetry thresholds were chosen to be 35.7 dB-Hz

for the 256 bps case, 44.7 dB-Hz for the 2048 bps case, and 53.8 dB-Hz

for the 16 kbps case. These were derived by taking the ideal PSK (Eb/No

threshold of 9.6 dB for 10- 5 bit error probability, adding 2 dB for

practical systems and then using the appropriate bit rates given above,

e.g., 9.6 dB + 2 dB + 10 log 2048.

Now, having found the needed thresholds and knowing the total

signal-to-noise density available, together with a nominal range for the

coding gain achievable (3-5 dB), the tables in Appendix C were used to

pick the modulation indices.

Looking at the downlink total signal-to-noise densities for

Case C (Item 30 of Table 3.4), the lowest is 19.5 dB-Hz. There is no way

that this can work due to the carrier requirement of 30 dB-Hz, therefore

go to an 85' dish. Going to the 85' dish forces the use of the maser

front end hence the 19.5 .is replaced by 23.3 plus the added antenna gain

of 9.5 for a total of 32.8 dB-Hz.

There is now a chance of supporting the mission, however, no

modulation loss has been accounted for. The only other factor to be

traded off is to increase the halo radius on the Heliocentric mission

which gives a solar noise factor of -9.8 dB instead of -11.2 dB, a pickup

of 1.4 dB. The total S/N is now 32.8 + 1.4 = 34.2 dB-Hz.
o

The above allowed the locking of the carrier, but looking at

the telemetry threshold, too much coding gain is needed. The conclusion

is to go to the lowest bit rate for this mission (44.7 dB-Hz goes to

35.7 dB-Hz).
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ITEM ITEM DESCRIPTION IME-H. BEST CASE IME-H. WORST CASE IME-M.-D. REST CASE IME-M.-D. WORST CASE

1. Grd Xmtr Power (USB 20KW) (dbm) 73.0 73.0 73.0 73.0
2. Xmtr to Antenna Xnssn Losses (dh) -0.1 -0.5 -0.1 -0.5
3. Grd Xmtr Antenna Gain (85'-52.5db, 30'-43db) (db) 52.5 52.5 52.5 43.0
4.- Path Loss (H.-1.5x10O*6K'I, 4.-D.-1.5x10*5Km, 2.1GHz) (db) -222.1 -222.1 -202.1 -202.1
5. Power at S/C Rcvr Antenna (c(dbm) -96.7 -97.1 -76.7 -86.6
6. S/C Rcvr Antenna Gain (Omni) (db) 2.0 -3.0 2.0 -3.0
7. Antenna to Rcvr Xmssn Losses (db) -1.0 -2.0 -1.0 -2.0
8. Power at S/C Rcvr Input (S(u)) (dbm) -95.7 -102.1 -75.7 -91.6
9. Uplink Solar Noise Factor (dh) 0.0 0.0 0.0 0.0
10. S/C Rcvr Noise Density (N(ou)) (dhm/Hz) -166.8 -166.8 -166.8 -166.8
11. Uolink Total (S(u)/(ou)) - (db-Hz) - 71.1 64.7 91.1 75.2
12. Bandpass Limiter Gain/Loss Factor (dh) 2.6 1.6 3.0 2.8
13. Uplink Ranning Factor (db) -4.7 -4.7 -4.7 -4.7
14. Coherent emodulation Factor (W(rf)/W(v)) (db) 3.0 3.0 3.0 3.0
15. Premodulation Signal to Noise Ratio -(db) .0 1.6 29.4 13.3
16. Unlink Ranninq Threshold (db) 0.0 0.0 0.0 0.0
17. UDIink Ranginq -ar-qir (dh) 9.0 1.6 29.4 13.3
18. Ranginq_Low_Pass Bandwidth (db-Hz) 60.) 60.0 60.0 60.0
19. S/C Xmtr Power (into Xmssn Line) (dnb) 31.0 31.0 27.0 27.0
20. Xmtr to Antenna Xmssn Losses (dh) -1.5 -3.0 -1.5 -3.0
21. S/C Antenna Gain (.eodium Gain Directional, mnni) (db) 9.0 9.0 0.6 9.0
22. S/C Antenna Pointing Loss (dh) 0.0 -2.0 0.0 -2.0
23. Path Loss (See Item 4, 2.3GHz) (dh) -223.1 -223.1 -204.9 -204.9
24. Power at Grd Rcvr Antenna (dbm) -184.6 -188.1 -170.4 -173.9
25. Grd Rcvr Antenna Gain (See Item 3) (db) 52.5 52.5t 52.5 52.5t
26. Antenna to Rcvr Xmssn Losses (db) -0.2 -0.5 -0.2 -0.5

r 27. Power at Grd Rcvr Input (S(d)) (dhm) -132.3 -136.1t -118.1 -121.9f
-  -

28. Downlink Solar Noise Factor (db) 0.1) -9.8t 0.0 0.0
29. __Grd Rcvr Noise Density (l(od))(',aser, Cool P., Hot P.)(dbm/Hz) -180.1 -178.8 -176.3 -180.1 -178.8 -176.3 -180.1 -178.8 -176.3 i -180.1 -178.8 -176.3
30. Downlink Total (S(d)/N(od)) (db-Hz) 47.8 46.5 44.0 34.2 32.9t 30.4t 62.0 60.7 58.2 58.2t 56t -- 54.4t
31. Downlink Ranging Factor (db) -6.4 -6.4 -6.4 -6.4 -6.4 -6.4 -8.2 -8.2 -8.2 -8.2 -8.2 -8.2
32. Downlink Carrier Factor (db) -1.1 -1.1 -1.1 -1.1 -1.1 -1.1 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7
33. Downlink Telemetry Factor (dh)
34. Downlink Ranging (S,(rd)/N(ld)) (dh-lz1) 41.4 40.1 37.6 21.8 26.5 24.0 53.8 52.5 50.0 50.0 48.7 46.2
35. Downlink Carrier (S(cd)/Nod)) (db-l!z) 46.7 45.4 42.9 33.1 31.8 29.3 61.3 60.0 57.5 57.5 56.2 53.7
31_._o wnlinkeJc rct S (S(td)/N (d)) (1db-Hz)

37. Downlink Effective Ranging (S(erd)/N(od)) (dh-Hz) 40.9 39.6 37.1 25.5 24.2 21.7 53.8 52.5 50.0 49.8 48.5 46.0
38. Grd Rcvr Ranging Threshold (Mark IA) (db-Hz) 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0
39. Grd Rcvr Carrier Threshold (dh-Hz) 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0
40. Grd Rcvr Telemetry Threshold (10*-5 BEP) (db-Hz)
41. Ranning Marqin (db) 17.9 16.6 14.1 2.5 1.2 -1.3 30.8 29.5 27.0 26.8 25.5 23.0
42. Carrier Iarni (dh) 16.7 15.4 12.9 3.1 1.8 -0.7 31.3 30.0 27.5 27.5 26.2 23.7
43. Telemetry Margin (db)
A4 CodinGain . . . (db)
45. Telemetry 'largin with Codlnn (db)

TABLE 3.7 IME LINK CALCULATION (CASE C, RANGE PRINTOUT)



ITEM ITEM DESCRIPTION IME-H. BEST CASE IME-H. WORST CASE IME-M.-D. BEST CASE IME-M.-D. WORST CASE

1. Grd Xmtr Power (USB 20KW) (dbm) 73.0 73.0 73.0 73.0
2. Xmtr to Antenna Xmssn Losses (db) -0.1 -0.5 -0.1 -0.5
3. Grd Xmtr Antenna Gain (85'-52.5db, 30'-43db) (db) 52.5 52.5 52.5 43.0
4. Path Loss (H.-1.5x10*6KPI, M.-D.-1.5x10*5Km, 2.10Hz) (db) -222.1 -222.1 -202.1 -202.1
5. Power at S/C Rcvr Antenna (dbm) -96.7 -97.1 -76.7 -86.6
6. S/C Rcvr Antenna Gain (Omni) (db) 2.0 -3.0 2.0 -3.0
7. Antenna to Rcvr Xmssn Losses (db) -1.0 -2.0 -1.0 -2.0
8. Power at S/C Rcvr Input (S(u)) (dbm) -95.7 -102.1 -75.7 -91.6
9. Uplink Solar Noise Factor (db) 0.0 0.0 0.0 0.0
10. S/C Rcvr Noise Density (N(ou)) (dbm/Hz) -166.8 -166.8 .-166.8 -166.8
11. Unlink Total (S(u)/N(ou)) (db-Hz) 71.1 64.7 91.1 75.2
12. Bandnass Limiter Gain/Loss Factor (db) 2.6 1.6 3.0 2.8
13. Uplink Ranging Factor (db) -4.7 -4.7 -4.7 -4.7
14. Coherent Demodulation Factor (W(rf)/W(v)) (db) 3.0 3.0 3.0 3.0
15. Premnodulation Signal to Noise Ratio (db) 9.0 1.6 29.4 13.3
16. Uplink Ranging Threshold (dh) 0.0 0.0 0.0 0.0
17. Uplink Ranqii argin (dh) 9.0 1.6 29.4 13.3
18. Ranging Low Pass Randwidth (db-Hz) 60.0 60.0 60.0 60.0
19. S/C Xmtr Power (into Xmssn Line) (dbm) 31.0 31.0 27.0 27.0
20. Xmtr to Antenna Xmssn Losses (db) -1.5 -3.0 -1.5 -3.0
21. S/C Antenna Gain ('endium Gain Directional, Omni) (dh) 9.0 9.0 9.0 9.0
22. S/C Antenna Pointina Loss (db) 0.0 -2.0 0.0 -2.0
23. Path.Loss (See Item 4, 2.TGHz) (db) -223.1 -223.1 -204.9 -204.9
24. Power at Grd Rcvr Antenna (dbm) -184.6 -188.1 -170.4 -173.9
25. Grd Rcvr Antenna Gain (See Item 3) (db) 52.5 52.5t 52.5 52.5t

(A 26. Antenna to Rcvr Xmssn Losses (db) -0.2 -0.5 -0.2 -0.5
* 27. Power at Grd Rcvr Inout (S(d)) (dbm) -132.3 -136. 1 t -118.1 -121.9t

28. Downlink Solar Noise Factor (db) 0.0 "-9.8t 0.0 0.0
OD 29. Grd Rcvr Noise Density (N(od)).MaserCool P., Hot P.)(dbm/Hz) -180.1 -178.8 -176.3 -180.1 -178,. -176.3 -180.1 -178.8 -176 3 -180, 1 -1788 -176.3

30. Downlink Total (S(d)/N(od)) (db-Hz) 47.8 46.5 44.0 34.2t 32.9t 30.4t 62.0 60.7 58.2 58.2t 56.9t 54.4t
31. Downlink Ranging Factor (db)
32. Downlink Carrier Factor (db) -3.1 -3.1 -3.1 -3.1 -3.1 -3.1 -15.4 -15.4 -15.4 -15.4 -15.4 -15.4
33. Downlink Telemetry Factor (db) -2.9 -7.0 -2, -2.9 -2,. -2.9 -0.1 -0.1 -0.1 -0. 1 -01 -. 1
34. Downlink Ranging (S(rd)/N(od)) (db-Hz)
35. Downllnk Carrier (S(cd)/Nod)) (dh-IHz) 44.7 43.4 40.9 31.1 29.8 27.3 46.6 45.3 42.8 42.8 41.5 39.0'
36. Downlink Telemetry (S(td)/N(od)) (db-Hz) 44.9 43.6 41.1 31.3 30.0 27.5 61.9 60.6 58.1 58.1 56.8 54.3
37. Downlink Effective Ranning (S(erd)/N(od)) . __ (dh-Hz)
38. Grd Rcvr Ranging Threshold (Mark IA) (db-Hz)
39. Grd Rcvr Carrier Threshold (db-Hz) 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0
40. _Grd Rcvr Telemetry Threshold (10*-5 BEP) __-____ (db-Hz) 44.7 44.7 44.7 35.7t 35.7t 35.7t 53.8 53.8 53.8 53.8 53.8 53.8
41. Ranging Margin (db)
42. Carrier Margin (rb) 14.7 13.4 10.9 1.1 -0.2 -2.7 16.6 15.3 12.8 12.8 11.5 9.0
43. Telemetry Hargin (db) 0.2 -1.1 -3.6 -4.4 -5.7 -8.2 8.1 6.8 4.3 4.3 3.0 0.5
44, Codinn Gain (b) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
45. Telemetry Margin with Codinn (dh) 5.2 3.9 1.4 0.6 -0.7 -3.2 13.1 11.8 9.3 Q.3 8.0 5.5

TABLE 3.8 IME LINK CALCULATION (CASE C, TELEMETRY PRINTOUT)



Summarizing so far there is 34.2 dB-Hz to play with prior to

modulation losses and it must be apportioned among thresholds of 30 dB-Hz,

23 dB-Hz, and 35.7 dB-Hz, for the carrier, ranging, and telemetry

respectively.

Consider the ranging channel, (34.2 - 30 = 4.2) and (34.2 - 23 = 11.2)

together with the loss factors of Appendix C give 0.5 for the ranging index. ( 19 )

This index optimizes the margins for the ranging and the carrier (see Table 3.7)

by making both as large as possible.

For the telemetry channel, (34.2 - 35.7 = -1.5) indicates that

a large coding gain is needed. It is at this point that a coding gain of 5 dB

is chosen. The -1.5 becomes (-1.5 + 5 = 3.5) and there is 4.2 dB and 3.5 dB

to be accounted for between the modulation losses and the margins.

The range of indices app!icab!e are

0.8 (-3.14 -2.89)

0.9 (-4.13 -2.12.)

Since there is slightly more carrier difference than telemetry

(4.2 over 3.5) a telemetry index of 0.8 will do the job (the -4.13 loss is

too much). The results of this choice are shown in Table 3.8.

Now going to the Mother-Daughter Mission, the worst case is

44.9 dB-Hz. The ranging and carrier are alright, but the telemetry will

not work. In keeping with the philosophy stated previously, the bit rate

is the last thing to be traded, hence, an 85' dish and maser replace the

30' dish and cooled or uncooled paramps. This gives 58.2 dB-Hz to play

with.

see Appendix C
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Using the same rationale as before the ranging and telemetry

indices are 0.4 and 1.4 respectively.

The rest of the modulation indices for the Cases D, E, and F

follow the same procedure with the results shown in Tables 3.9, 3.10, and

3.11. In the case of Table 3.9 another iteration was needed due to the

effect of the low uplink signal-to-noise ratio, that is, the effective

signal-to-noise density is not a linear function of the downlink signal-

to-noise density.

After the appropriate modulation factors (Items 31, 32, 33)

are taken into account the available S/No for ranging, carrier, and

telemetry can be found (Items 34, 35, 36).

The last item to be calculated prior to ascertaining the relevant

signal margins is the effective ranging signal-to-noise density. An explan-

ation is in order.

In turning around the ranging signal the uplink noise is modulated

onto the downlink carrier together with the uplink ranging waveform. The

resultant is a noisy ranging signal even if no downlink noise was present.

If K is the downlink power gain, S is the uplink noisefree premodulation

ranging in the spacecraft, N1 is the uplink noise power, and N2 is the downlink

noise power, then the total received ranging signal for ground system

processing is

KS + KN1 + N2  (3.3)

Defining

A
A = (KS + KN )/N2  (3.4)
A

B = S/N 1  (3.5)
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ITEM ITEM DESCRIPTION IME-H. BEST CASE IME-H. WORST CASE IME-M.-D. REST CASE IME-M.-D. WORST CASE

T. Grd Xmtr Power (USB 20<KW) (dbm) 73.0 73.0 73.0 73.0

2. Xmtr to Antenna Xmssn Losses (db) -0.1 -0.5 -0.1 -0.5

3. Grd X'mtr Antenna Gain (85'-52.5db, 30'-43db) (db) 52.5 52.5 52.5 43.0

4. Path Loss (H.-1.5x10*61A4, M.-D.-1.5x10*5Km,. 2.1GHz) (db) -222.1 -222.1 -202.1 -202.1

5. Power at S/C Rcvr Antenna (dbm) -96./ -91.1 -76.7 -86.6

6. S/C Rcvr Antenna Gain (Omni) (db) 2.0 -3.0 2.0 -3.0

7. Antenna to Rcvr Xmssn Losses (db) -1.0 -2.0 -1.0 -2.0

8. Power at S/C Rcvr Input (S(u)) (dbm) -95.7 -102.1 -75.7 -91.6

9. Uplink Solar Noise Factor (db) 0.0 0.0 0.0 0.0

10. S/C Rcvr Noise Density (N(ou)) (dbm/Hz) -166.8 -166.8 -166.8 -156,8

11. Uolink Total (S(u)/N(ou)) (db-Hz) 71.1 64.7 91.1 75.2

12. BandDass Limiter Gain/Loss Factor (db) 2.6 1.6 3.0 2.8

13. Uplink Ranging Factor (db) -4.7 -4.7 -4.7 -4.7

14. Coherent Demodulation Factor (W(rf)/W(v)) (db) 3.0 3.0 3.0 3.0

15. Premodulation Signal to Noise Ratio (dh) 9.0 1.6 29.4 13.3

16. UWlink Rannino Threshold (db) 0.0 0.0 0.0 0.0

17. Uplink Ranoing Margin (db) 9.0 1.6 29.4 13.3

183. Raeninn Low Pass nandwidth (dh-llz) 60.0 60.0 60.0 60,0

19. S/C Xmtr Power (into Xmssn Line) (dhm) 34.0 34.0 30.0 30.0

20. Xmtr to Antenna Xmssn Losses (db) -1.5 -3.0 -1.5 -3.0

21. S/C Antenna Gain (vedium Gain Directional, Omni) (dh) 9.0 Q.0 9.0 9.0

22. S/C Antenna Pointing Loss (db) 0.0 -2.0 0.0 -2.0

23, Path Loss (See Item 4. 2.3GHz) (db) -223.1 -223.1 -204.9 -204,9

24. Power at Grd Rcvr Antenna (dbm) -181.6 -185.1 -167.4 -170.9

tj 25. Grd Rcvr Antenna Gain (See Item 3) (db) 52.5 52.5t 52.5 52.5t

26. Antenna to Rcvr Xmnsn Losses (db) -0.2 -0.5 -0.2 -0.5
lI 27. Power at Grd Rcvr InDut (S(d)) (dbm) -129.3 -133.1t -115.1 -118.9t

> 28. Downlink Solar Noise Factor (db) 0.0 -9. 8t 0.0 0.0
29. Grd Rcvr Noise Donsity (N(od)),(Maser, Cool P., Hot P.)(dhm/Hz) -180.1 -178.8 -176.3 -180.1 -178.8 -176.3 -180.1 -178.8 -176.3 -180.1 -178.8 -176.3

30. Downlink Total (S(d)/N(odl)) (db-Hz) 50.8 49.5 47.0 37.2t 35.9t 33.4t 65.0 63.7 61..2 61.2t 59.9t 57.4t

31. Downlink Ranging Factor (db) -11.0 -11.0 :11.0 -11.0 -11.0 -11.0 -27.3 -27.3 -27.3 -27.3 -27.3 -27.3

32. Downlink Carrier Factor (db) -3.6 -3.6 -3.6 -3.6 -3.6 -3.6 -19.9 -19.9 -19.9 -19.9 -19.9 -19.9

33. Downlink Telemotrv Factor (dh) -4.3 -4.3 -4.3 -4.3 -4.3 -4.3 -2.8 -2.8 -2.8 -2,8 -2.8 -2,.
34. Downlink Ranging (S(rd)/N(od)) (db-Hz) 39.8 38.5 36.0 26.2 24.9 22.4 37.7 36.4 33.9 33.9 32.6 30.1

35. Downlink Carrier (S(cd)/Nod)) (db-Hz) 47.2 45.9 43.4 33.6 32.3 29.8 45.1 43.8 41.3 41.3 40.0 37.5

36. Downlink Telemetry (S(td)/N(od)) (db-Hz) 46.5 45.2 42.7 32.9 31.6 29.1 62.2 50.9 58.4 58.4 57.1 54.6

37. Downlink Effective Ranninq (S(erd)/N(od)) (db-Hz) 39.3 38.0 35.5 23.9 22.6 20.1 37.7 36.4 33.9 33.7 32.4 29.9

38. Grd Rcvr Ranging Threshold (Mark IA) (db-Hz) 23.0 23.0 23.0 23.0 23.0 .0 23.0 23.0 23.0 23.0 23.0 23.0 23.0

39. Grd Rcvr Carrier Threshold (dh-lIz) 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0

40. Grd Rrvr Teleretry Threshold (10*-5 BEP) (db-!Iz) 44.7 44.7 44.7 35.7t 35.7t 35.7t 53.8 53.8 53.8 53.8 53.8 53.8

41. Ranging '1argin (db) 16.3 15.0 12.5 0.0 -0.4 -2.9 14.7 13.4 10.9 10.7 9.4 5.9

42. Carrier NIargin (db) 17.2 15.9 13.4 3.6 2.3 -0.2 15.1 13.8 11.3 11.3 10.0 7.5

43. Telemetry Margin (dh) 1.8 0.5 -2.0 -2.8 -4.1 -6.6 8.4 7.1 4.6 4.6 3.3 0.8

44. Codino Gain (dh) 50 50 5.0 5..0 .0 5.0 .0 5.0 05. 5 5.0 5.0 50 5.0 ,0 ,0 ,
45. Telemetry Marqin with Codin (db) 6.8 5.. 3.0 2.2 0.9 -1.6 13.4 12.1 0.6 .6 8.3 5.8

TABLE 3.9 IME LINK CALCULATION (CASE D, ITERATION 1)



ITEM ITEM DESCRIPTION IME-H. REST CASE IME-H. WORST CASE IME-M.-D. REST CASE IME-M.-D. WORST CASE

1. Grd Xmtr Power (USB 20KW) (dbm) 73.0 73.0 73.0 73.0
2. Xmtr to Antenna Xmssn Losses (db) -0.1 -0.5 -0.1 -0.5
3. Grd Xmtr Antenna Gain (85'-52.5db, 30'-43db) (db) 52.5 52.5 52.5 43.0
4. Path Loss (H.-1.5x10*6.1, M.-D.-1.5x10*5Km, 2.1GHz) (db) -222.1 -222.1 -202.1 -202.1
5. Power at S/C Rcvr Antenna (dbm) -96.7 -97.1 -76.7 -86.6
6. S/C Rcvr Antenna Gain (Omni) (db), 2.0 -3.0 2.0 -3.0
7. Antenna to Rcvr Xmssn Losses (db) -1.0 -2.0 -1.0 -2.0
8. Power at S/C Rpvr Input (S(u)) (dbm) -95.7 -102.1 -75.7 -91.6
9. UplinkSolar Iloise Factor (db) 0.0 0.0 0.0 0.0
10. S/C Rcvr Noise Density (N(ou)) (dbm/1Hz) -166.8 -166.8 -166.8 -166.8
11. Uplink Total (S(u)/N(ou)) (db-Hz) 71-.1 64.7 91.1 75.2
12. Bandpass Limiter Gain/Loss Factor (db) 2.6 1.6 3.0 2.8
13. Uplink Ranqing Factor (db) -4.7 -4.7 -4.7 -4.7
14. Coherent Demodulation Factor (W(rf)/W(v)) (db) 3.0 3.0 3.0 3.0
15. Premodulation Signal to Noise Ratio (db) 9.0 1.6 29.4 13.3
16. Uplink Rannina Threshold (db) 0.0 . 0.0 0.0 0.0
17. Uplink Ranging Marqin (db) 9.0 1.6 29.4 13.3
18. Rannino Low Pass 9andwidth (dh-Hz) 60.0 60.0 60.0 60.0
19. S/C Xmtr Power (into Xmssn Line) (dbm) 34.U 34.0 5 30.0 30.0
20. Xmtr to Antenna Xmssn Losses (db) -1.5 -3.0 -1.5 -3.0
21. S/C Antenna Gain (Medium Gain Directional, Omni) (db) 2.0 -3.0 2.0 -3.0
22. S/C Antenna Pointing Loss (dh) 0.0 0.0 0.0 0.0
23. Path Loss (See Item 4_ 2 3GHz) (db) -223.1 _-223.1 -204.9 -204.9
24. Power at Grd Rcvr Antenna (dbn) -188.6 -195.1 -174.4 -180.9

c 25. Grd Rcvr Antenna Gain (See Item 3) (dh) 52.5 52.5t 52.5 52.5t
26. Antenna to Rcvr Xmssn Losses (db) -0.2 -0.5 -0.2 -0.5

L 27. Power at Grd Rcvr input (S(d)) (dbm) -136.3 -143.1t -122.1 -128.9t
Co 28. Downlink Solar Noise Factor (db) 0.0 -9.8t 0.0 0.0

29. Ord Rcvr Ioise Density (N(od)),(Maser, Cool P., Hot P.)(dbm/Hz) -180.1 -178.8 -176.3 -180.1 -178.8 -176.3 -180.1 -178.8 -176.3 -180.1 -178.8 -176.3
30. Downlink Total (S(d)/N(od)) (db-Hz) 43.8 42.5 40.0 27.2t 25.0t 23.4t 58.0 56.7 54.2 51.2t 49.9t 47.4t
31. Downlink Ranging Factor (dh) -8.2 -8.2 -8.2 -8.2 -8.2 -8.2 -8.2 -8.2 -8.2 -8.2 -8.2 -8.2
32. Downlink Carrier Factor (db) -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7
31_Down L inkJlo I nmetcy _Eactor (b)_ _ dh )
34. Downlink Ran(ing (S(rd)/H(od)) (db-lHz) 35.6 34.3 31.8 10:0 17.7 15.2 49.8 48.5 46.0 43.0 41.7 39.2
35. Downlink Carrior (S(cd)/Nod)) (dh-Hz) 43.1 41.8 39.3 26.5 25.2 22.7 57.3 56.0 53.5 50.5 4Q.2 46.7
36. Downlink Telemetry (S(td)/l(od)) (dh-Hz)
37. Downlink Effective Rnin? (Sl(rd)/N(od)) (dh-liz) 35,1 33, 31.3 167 15.4 2.9 49,8 48,5 46,0 43,8 41,5 39.0
38. Grd Rcvr Ranging Threshold (Mark IA) (db-Hz) 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0
39. Grd Rcvr Carrier Threshold (db-Hz) 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0
40. Grd Rcvr Telemetry Threshold (10*"-5 REP) (dh-Hz)
41. Ranning Hlarnin (dh) 12.1 10.8 8.3 -6.3 -7.6 -10.1 26.8 25.5 23.0 19.8 18.5 16.0
42. Carrier Margin (db) 13.1 11.8 9.3 -3.5 -4.8 -7.3 27.3 26.0 23.5 20.5 19.2 16.7
43. Telemetry Margin (db)
44. oij.oi Gaon_ ) .. .. . . ... ....
45. Telemetry NMargin with Codinq (db)

TABLE 3.10 IME LINK CALCULATION (CASE E)



ITEM ITEM DESCRIPTION IME-H. REST CASE IME-H. WORST CASE IME-M.-D. REST CASE IME-M.-0. WORST CASE

1. Grd Xmtr Power (USR 20KW) (dhm) 73.0 73.0 73.0 73.0
2. Xmtr to Antenna Xmssn Losses (1db) -0.1 -0.5 -0.1 -0.5
3. Grd Xntr Antenna Gain (85'-5?.5db, 30'-43dh) (dh) 52.5 52.5 52.5 43.0
4. Path Loss (H.-1.5x106*6Cl M.-D.-1.5x10*5Km, 2.1GHz) (db) -222.1 -222.1 -202.1 -202.1
5. Power at S/C Rcvr Antenna (dbm) -96.7 -97.1 -76.7 -86.6
6. S/C Rcvr Antenna Gain (Omni) (dh) 2.0 -3.0 2.0 -3.0
7. Antenna to Rcvr Xmssn Losses (db) -1.0 -2.0 -1.0 -2.0
8. Power at S/C Rcvr Input (S(u)) (dbm) -95.7 -102.1 -75.7 -91.6
9. Uplink Solar Noise Factor (db) 0.0 0.0 0.0 0.0
10. S/C Rcvr Noise Density (N(ou)) (dbm/Hz) -166.8 -166.8 -166.8 -166.8
11. Uplink Total (S(u)/H(ou)) (db-Hz) 71.1 64.7 91.1 75.2
12. Bandpass Limiter Gain/Loss Factor (db) 2.6 1.6 3.0 2.8
13. UDlink Ranging Factor (dh) -4.7 -4.7 -4.7 -4.7
14. Coherent Demodulation Factor (II(rf)/W(v)) (db) 3.0 3.0 3.0 3.0
15. Premodulation Signal to Noise Ratio (db) 9.0 1.6 29.4 13.3
16. Uplink Ranging Threshold (db) 0.0 0.0 0.0 0.0
17. Uplink Ranging Miargiri (db) 9.0 1.6 29.4 13.3
18. Ranginn Low Pass Bandwidth (db-Hz) 60.0 60.0 60.0 60.0
19. S/C Xmtr Power (into Xmssn Line) (dbm) 34.0 34.0 30.0 30.0
20. Xmtr to Antenna Xmssn Losses (db) -1.5 -3.0 -1.5 -3.0
21. S/C Antenna Gain (Medium Gain Directional, Onni) (db) 2.0 -3.0 2.0 -3.0
22. S/C Antenna Pointing Loss (db) 0.0 0.0 0.0 0.0
23. Path Loss .See item 4, 2.3GHz) (db) -223.1 -223.1 . -204.9 -204.9
24. Power at Crd Rcvr Antenna (dhm) -188.6 -195.1 -174.4 -180.9.
25. Grd Rcvr Antenna Gain (See item 3) (dh) 52.5 52.5t 52.5 52.5t
26. Antenna to Rcvr Xmssn Losses (db) -0.2 -0.5 -0.2 -0.5.

N, 27. Power at Grd Rcvr Input (S(d)) (dbm) -136.3 -143.1t -122.1 -128.9t
28. Downlink Solar Noise Factor (db) 0.0 -9.8t " 0.0 0.0
29. Ord Rcvr Noise Density (l(od)),(.aser, Cool P., Hot P.)(dbn/llz) -180.1 -178.8 -176.3 -180.1 -178.8 -176.3 -180.1 -178.8 -176.3 -180.1 -178.8 -176.3
30. Downlink Total (S(d)/N(od)) (dh-Hlz) 43.8 42.5 40.0 27.2t 25.9t 23.4t 58.0 56.7 54.2 51.2t 49.9t 47.4t
31. Downlink Ranging Factor (db)
32. Downlink Carrier Factor (db) -8.8 -8.8 -8.8 -8.8 -15.4 -15.4 -15.4 -15.4 -15.4 -15.4
33, Downlink Telemetrv Factor (db) -0.6 -0.6 -0.6 -0.6 -0.6 -0.6 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1
34. Downlink Ranqinq .(S(rd)/N(od)) (db-Hz)
35. Downllnk Carrier (S(cd)/Nod)) (db-Hz) 35.0 33.7 31.2 18.4 17.1 14.6 42.6 41.3 38.8 35.8 34.5 32.0
36. Downllnk Telemetry (S(td)/N(od)) (db-Hz) 43.2 41.9 39.4 26.6 25.3 22.8 57.9 56.6 54.1 51.1 49.8 47.3
37. Downlink_Effective Ranglnm (S(erd)/N(od)) ( dh-iz)
38. Grd Rcvr Ranging Threshold (Mark 1A) (db-Hz)
39. Grd Rcvr Carrier Threshold (db-Hz) 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0
40. Grd Rcvr Telemetry Threshold (10*-5 REP) (dh-Hz) 44.7 44.7 44.7 35.7t 35.7t 35.7t 53.8 53.8 53.8 53.8 53.8 53.8
41. Ranging 'Margin (db)
42. Carrier iargin (db) 5.0 3.7 1.2 -11.6 -12.9 -15.4 12.6 11.3 8.8 5.8 4.5 2.0
43. Telemetry Margin (db) -1.5 -2.8 -5.3 -9.1 -10.4 -12.9 4.1 2.8 0.3 -2.7 -4.0 -6.5
44. Codinn Gain (dh) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
45. Telemetry Margin with Coding (dh) 3.5 2.2 -0.3 -4.1 ->.4 -7.9 9.1 7.8 5.3 2.3 i.0 -1.5

TABLE 3.11 IME LINK CALCULATION (CASE F)



then A is the composite signal-to-noise, i.e., considering S + NI as

the downlink premodulation signal, and B is the uplink signal-to-noise.

The effective SNR is the one which actually is effective in producing

the ranging data and is given by

C (KS)/(KN1 + N2) = AB/(1 + A + B). (3.6)

Note that if A<<B then

C = A, (3.7)

and if B<<A, then

C = B. (3.8)

An example may help to solidify ideas. Consider Items 15

and 34. Item 34, adjusted for the ranging bandwidth gives the composite

SNR. Looking at Table 3.12 for example, A = 40.9 - 63 and B = 9.0

(Heliocentric maser best case); hence B>>A. Essentially, then, the

uplink factor, B, can be ignored and the effective S/No, Item 37 is

almost the same as Item 34.

At thispoint all the pertinent factors have been taken into

account and the margins may be calculated (Items 41, 42, 43, 45).. Task 1

is therefore completed.
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ITE ITE DESCRIPTION IME-H. BEST CASE IME-H. WORST CASE IME-M.-D. REST CASE IME-M.-D. WORST CASE

1, Grd Xhtr Power (UISB 201<) (dbm) 73.0 73.0 73.0 73.0

2. Xmtr to Antenna Xmssn Losses (db) -0.1 -0.5 -0.1 -0.5

3. Grd Xmtr Antenna Gain (85'-52.5db, 30'-43db) (db) 52.5 52.5 52.5 43.0

4. Path Loss (H.-1.5x10*6K, M.-D.-1.5x10*5Km, 2.1GHz) (db) -222.1 -222.1 -202.1 -202.1

5. Power at S/C Rcvr Antenna (dbm) -06.7 -97.1 -76.7 -86.6

6. S/C Rcvr Antenna Gain (Omnl) (db) 2.0 -3.0 2.0 -3.0

7. Antenna to Rcvr Xmssn Losses (db') -1.0 -2.0 -1.0 -2.0

8. Power at S/C Rcvr Input (S(u)) (dbm) -95.7 -102.1 -15.7 -91.6

9. Uplink Solar Noise Factor (db) 0.0 0.0 0.0 0.0

10. S/C icvr Noise Density (N(o)) (dbm/Hz) -166.8 -166.8 -166.8

11. Uplink Total (S(u)/N(ou)) (db-Hz) 71.1 64.7 91.1 75.2

12. 9andpass Limiter Gain/Loss Factor (db) 2.6 1.6 3.0 2.8

13. Uplink Ranging Factor (db) -4.7 -4.7 -4.7 -4.7

14. Coherent Demodulation Factor (W(rf)/W(v)) (db) 3.0 3.0 3.0 3.0

15. Premodulation Signal to Noise Ratio , (db) 9.0 1.6 29.4 13.3

16. Uplink Ranoing Threshold (db) 0.0 0.0 0.0 0.0

17. Uplink Ranging Margin (dh) 9.0 1.6 29.4 13.3

18. Ranqing Low Pass Bandwidth (dh-Hz) 60.0 60.0 60.0 60.0

19. S/C Xmtr Power (into Xmssn Line) (dbm) 34.0 34.0 30.0 30.0

20. Xmtr to Antenna Xmssn Losses (db) -1.5 -3.0 -1.5 -3.0

21. S/C Antenna Gain (Medium Gain Directional, Omnl) (db) 9.0 9.0 9.0 9.0

22. S/C Antenna Pointing Loss (db) 0.0 -2.0 0.0 -2.0

23. Path Loss (See Item 4, 2.3GHz) (dh) -223.1 -223.1 -204.9 -204.9

24. Power at Grd Rcvr Antenna (dbm) -181,.6 -185.1 -6.4 -170.9

25. Grd Rcvr Antenna Gain (See Item 3) (dh) 52.5 52.5 52.5 52.5

(JI 26. Antenna to Rcvr Xmssn Losses (db) -0.2 -0.5 -0.2 -0.5

27. Power at Grd Rcvr Inout (S(d)) (Ibm) -129.3 -133.1 -115.1 -118.9

28. Downlink Solar Noise Factor (db) 0.0 -9.8 0.0 0.0

> 29. Grd Rcvr iloise Density (N(od)),(Maser, Cool P., Hot P.)(dhm/llz) -180.1 -170.8 -176.3 -180.1 -178.8 -176.3 -180.1 -178.8 -176.3 -180.1 -178.8 -176.3

30. Downlink Total (S(d)/N(od)) (dh-Hz) 50.8 49.5 47.0 37.2 35.9 33.4 65.0 63.7 61.2 61.2 59.9 57.4

31. Downlink Ranging Factor (db) -9.9 -0.9 -9.9 -9.9 -9.9 -9.9 -27.3 -27.3 -27.3 -27.3 -27.3 -27.3

32. Downlink Carrier Factor (dh) -4.6 -4.6 -4.6 -4.6 -4.6 -4.6 -19.9 -19.9 -1Q.9 -19.9 -19.9 -19.9

33. Downlink Telemetry Factor (db) -4.2 -4.2 -4.2 -4,2 -4.2 -4.2 -2.8 -2.8 -2.8 -2.8 -2.8 -2.8

34. Downlink Ranging (S(rd)/N(od)) (db-Hz). 40.9 39.6 37.1 27,3 26.0 23.5 37.7 36.4 33.9 33.9 32.6 30.1

35. Downlink Carrier (S(cd)/Nod)) (dh-Hz) 46.2 44.9 42.4 32.6 31.3 28.8 45.1 43.8 41.3 41.3 40.0 37.5

36. Downlink Telemetry (S(td)/N(od)) (db-Hz) 46.6 45.3 4?.8 33.0 31.7 79.2 62.2 60.9 58.4 58.4 57.1 54.6

37. Downlink Effectlve Ranlinq (S(erd)/N(od)) (dh-Hz) 40.4 39.1 36.6 25.0 23.7 21.2 37.7 36.4 33.9 33.7 32.4 29.9

38. Grd Rcvr Ranging Threshold (MIark 1A) (db-Hz) 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0

39. Grd Rcvr Carrier Threshold (db-lIz) 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0

40. Grd Rcvr Telemetry Threshold (10*-5 REP) (db-Hz) 44.7 44.7 44.7 35.7 35.7 35.7 53.8 53.8 53.8 53.8 53.8 53.8

41. Ranging Margin (db) 17.4 16.1 13.6 2.0 0.7 -1.8 14.7 13.4 10.9 10.7 9.4 6.9

42. Carrier Margin (db) 16.2 14.9 12.4 2.6 1.3 -1.2 15.1 13.8 11.3 11.3 10.0 7.5

43. Telemetry Margin (db) 1.9 0.6 -1.9 -2.7 -4.0 -6.5 8.4 7.1 4.6 4.6 3.3 0.8

44, CodinT Gain (db) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5,0 5,0 5.0
45. Telemetry Margin with Codinq (dh) 6.9 5.6 3.1 2.3 1.0 -1.5 13.4 12.1 9.6 9.6 8.3 5.8

TABLE 3.12 IME LINK CALCULATION (CASE D, ITERATION 2)



3.2 TASK 2 DISCUSSION AND RESULTS

In this section of the report both the theoretical and practical

aspects of convolutional encoding and decoding will be presented. The dis-

cussion will start with the general theory as found in the literature, look

at the encoding problem, and finally pursue the important subject of decoding

convolutional codes.

Decoders will be designed and cost factors shown for the maximum

likelihood and sequential decoding algorithms. While feedback decoding will

be discussed due to its importance as a major decoding technique, no costing

or design will be done for it since it is well known that the complexity required

for the high coding gains needed by IMEMD/H (>5 dB) is impractical to

implement. More will be said on this subject in the section on feedback decoding.

3.2.1 CONVOIIITIONAL CODING THEORY

This part of the section will review the theory of convolutional

coding as it relates to the general topic of communication. A minimum of

mathematics will be used, however, since coding is a mathematical animal, so

to speak, the results of the literature, i.e., equations, inequalities, etc.,

will be presented. These results together with heuristic explanations, tables,

and figures will, it is hoped, transfer the maximum amount of information with

the minimum amount of confusion; they should also serve to provide a basis

upon which the encoding/decoding technique can be built.

The majority of this subsection is drawn from reference 20,

however, the author's own experience, and that of others will be interlaced

to embellish the basic treatise.

The best and most common way of introducing convolutional codes

is by way of an example. This will be followed here. Consider Figure 3.10
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the data (information) sequence enters the three bit (BO , B1 , B2 ) shift

register in a serial manner (prior to the data the B 's were set to zero).

After each bit is shifted into the encoder the multiplex switch (S) samples

the two outputs of the exclusive-ors (M1, M2 ) which have added their inputs

via register taps from the various stages. The addition here is that of the

binary Galois field, i.e., modulo-2 (mod-2) (See Table 3.13)

+ M1

code data 0 + 0 = 0

- S BO B
sequence Isequence 1 + 1 = 0

0+ =

VIM2 1 +0= 1

FIGURE 3.10 CONVOLUTIONAL ENCODER TABLE 3.13 MODULO-2 ADDITION

The two bits (n=2) outputted from the multiplexer per data bit

are the so called code bis, and the sequence of.these bits are the encoded

bit stream. Thus a sequence of data bits, say, X = (XO, X1', ." XN) has,

via the encoder, resulted in another bit stream, the encoded bits, say,

Y = (Yo, Y1' " YM )

At this point it is of interest to point out why this type of

code is called a convolutional code. The key is in how Y is related to X.

Consider the output of M1 for a moment; call it Z. If a vector q = (g0, g1' g2)

is defined to be the connection vector to the mod-2 adder M1, that is, g = 1

if the register stage Bi is connected to M1 and gi = 0 if not, then it is

clear that the time waveform Z(t) corresponding to Z is a linear function

of the waveform X(t) corresponding to X since Z(t) is the result of adding
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various portions of the input waveform; therefore Z(t) is related to X(t) by

convolution, i.e.,

Z(t) = X(t) * h(t), (3.9)

where h(t) is some equivalent encoder filter impulse response. In fact h(t)

can be found as follows. Let

X1(t) = u(t) - u(t-T) (3.10)

i.e., a pulse at time t = 0 and ending at t = T (u(t) is the unit step function).

The output Z1(t) is

Z (t) = g0 X1 (t) :0<t<T

= glX (t-T) :T<t<2T
(3.11)

g X l(t-nT) :nT<t<(n+1)T

Due to the choice of X (t) (non-overlapping pulse)

k
Zl(t) - gX 1 

(t-nT) (3.12)
n=O

The Laplace Transform of h(t) is therefore

k -nTs -(n+1)Ts -Ts
H(s) = [ gn e -e -e (3.13)

k k -nTs

H(s) = Y g e (3.14)

n=0
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which implies that

k
h(t) = g 6(t-nT) (3.15)

n=O

where 6(t) is the dirac delta function. The encoder, then, is a linear

filter with its response given by its tap arrangement, and the output is

the convolution of the input with the impulse response. The code stream is

merely the time multiplexing of several filter outputs.

The specific encoder in Figure 3.10 can be described as a rate

1/2, constraint length 3, nonsystematic encoder. The rate of a code is the

number of data bits encoded per code bit outputted, e.g., if two data bits

were shifted into the encoder per multiplex cycle the rate would be 2/2 = 1.

In the following text "b" will be the number of data bits encoded per cycle

and "n" will be the number of coded bits per cycle; thus a general encoder

rate is R = b/n.

Logically it would seem to be best to have R small so that many

code bits contain information about a given data bit. The .drawback is that

more code bits per cycl'e mean high code symbol rates and thus more bandwidth

is used. Obviously, a tradeoff is involved.

The code is nonsystematic because the data bits are not part of

the coded bits. A systematic encoder would send data bits along with coded

(sometimes called parity) bits. Figure 3.11 shows a systematic encoder.

Note that the data bits are alternated with the parity bits due to the direct

connection to one stage of the register.
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Again logic dictates that less information is sent, in terms of

coding, if a systematic code is used. It has been shown that a nonsystematic

code of constraint length K is equivalent to systematic code of constraint

(21)
length 2K if a rate 1/2 code is assumed. Similar results hold for other rates.

Code
- Bo B B2  ata

Sequence Sequence

FIGURE 3.11 SYSTEMATIC CONVOLUTIONAL ENCODER FOR K=3, b/n=1/2

The last qualifier used above was the constraint length, K. This

quantity is defined in a number of different ways in different papers; here,

however, it will mean the number of stages in the encoder. Note that the set

of all tap coefficients (for all adders) must include g1 and gK otherwise

one end register stage is not used and can be dropped.

The constraint length governs the number of code bits which contain

information about, i.e., which are a function of, a given data bit. Obviously

the more information supplied about a data bit the less the chance of making

an error in a decision on that bit.

Getting back to the example now, consider Figures 3.12, 3.13, and

3.14. All of these figures are equivalent representations of the encoder

shown in Figure 3.10; the information is merely contained in different forms.
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10c 11

-1 E : 00

01c 11
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01 0.1
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FIGURE 3.12 TREE DIAGRAM FOR ENCODER OF FIGURE 3.10

O1 \ F I 3 10t O 1F

3-3
tt b 011 1 b

10 10 10 / 10 01
\ \ 10

01 01 / 00 01 00 01\ / 00

\ /\ b c

\ 01 01 01
101 d 10 00
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FIGURE 3.13 TRELLIS DIAGRAM FOR ENCODER FIGURE 3.14 STATE DIAGRAM FOR
OF FIGURE 3.10 ENCODER OF FIGURE 3.10
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Figure 3.12 is the tree representation of the encoder. It works as follows.

Beginning at the "Start" point, if a data bit entering the encoder is a 0

the upper branch of the tree is chosen. If a 1 enters the lower branch is

chosen. For example, if the first data bit was a 1 then the dotted branch

of Figure 3.12 is picked and the bits on this path, viz., "11" indicate

that a "11" was the output of the encoder due to the 1 input. Looking at

Figure 3.10, the output of M1 is BO + B1 +.B2 = 0 + 0 + 1 = 1, and the

dutput of M2 is BO + B2 = 0 + 1 = 1; hence the output of S is indeed 11.

We are now at point (node) P in the tree. Suppose the second

data bit is a 0 then the upper branch from P is chosen and an output of

10 is indicated. Continuing in this manner any input data sequence can be

found to result in a code sequence given by the path through the tree.

The tree is simplest to understand, but it is complex to draw

after only a few data shifts. This is where Figure 3.13 comes into play.

This is the trellis representation of the encoder. Where the tree grew in

two dimensions, the trellis grows only in one dimension. The trellis is a

result of the observation that once a data bit "drops" out of the encoder

stage BO , its influence must disappear. Because of this the tree must repeat,

i.e., B0 = dO , B1 = d ,B2 = d2 must give the same output regardless of where

the consecutive data bits dO, d1,d2 occur within the data stream. As a

concrete example consider the data sequences 00000, 10000, 11000, and 01000.

All of these sequences lead to the point Q in the tree (see also Q in the

trellis). Since any sixth data bit will load the register in the same way

for all of the four 5 data bit sequences above the four points Q in the tree

may be tied together. This is exactly the trellis.
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The trellis is better to draw than the tree and yet contains all

the information that the tree contains, however, it still grows in one dimension

as more data bits are added to the input. Figure 3.14 is the state diagram

of the encoder; it eliminates this last drawback, and loses no information

about the encoder. The state diagram is a result of the observation that

the encoder output for each shift is completely determined by what is in the

register prior to the shift and immediately following the shift, i.e., if

BO = 0, B = 1, B2 = 0, then a data bit entry must result in BO =1, B = 0,

B2 = new data bit. In other words the only bit in doubt is B2 when given

the state BO B .

Looking now at Figure 3.14 suppose we have all zeros in the

register, and an input of 1 is shifted into it. Well the BO = 0, B1 = 0

implies a present state of "a" in the figure, whereas, the B = 0, B2 = 1

implies that the next sta-le will be "b". Thus the state diagram travels

from state "a" to "b" and the path label gives the output bits as a "11."

Continuing in this manner any given data sequence will result in the corre-

sponding coded sequence.

Each of these representations of the code has its usefulness and

should be understood to fully realize the workings of a convolutional code.

Also the mathematical properties of the code are developed by these diagrams.

As a side note sequential and feedback decoding are best understood by using

the tree, whereas, maximum likelihood decoding uses the trellis or state

diagrams.

At this point in the section several important results of the

theory of convolutional codes will be stated without all of the developmental

material. The reader interested in the details leading up to the results can

refer to the papers referenced at the end of this report.
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The space channel involved in the IMEMD/H study can be

accurately modeled by the additive white Gaussian noise (AWGN) channel with

no memory, that is, the channel noise is added to the transmitted symbols

independent of which symbols are sent, the noise is gaussianly distributed,

and has a constant power density (No/2) over a frequency range which is

large compared with the signal bandwidth. Also the filtering, etc. of the

channel is such that each symbol is transmitted independent of any other

6 ne, i.e., memoryless.

It will be assumed that ideal PSK is us.ed, i.e., a +a/2 shift of

the carrier represents a 1 while -7r/2 shift represents a 0.

If each symbol is assumed to be equally likely to occur, then

it is well known that a receiver which calculates the probability of the

received sequence given that a particular coded sequence was sent, does this

for each coded sequence, and then picks that coded sequence which gives the

highest probability is optimum in the a posteriori sense. In the following

this type of receiver is assumed.

Speaking heuristically the more dissimilar a set of sequences

are the more errors correctable, e.g., if a 0 is sent and an error causes it

to change to a 1 there is no way to tell if a 1 wasn't sent, i.e., no errors

correctable. If a 000 is sent and one error occurs, say, 010 it can be

guessed that a 000 was sent rather than a 111 because a 000 is closer in

digits to 010 than 111 is. Continuing further a 00000 and 11111 are even

more dissimilar and thus will correct more errors. This is an example of

simple redundancy coding. It gains little because the energy per symbol

decreases linearly with the number of symbols. General coding allows an
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*increase in dissimilarity, i.e., an increase in distance between two symbols,

without an equal decrease in energy per symbol; the energy does decrease, but

not as fast as the increase in dissimilarity.

The above discussion was to introduce the concept of distance

between code words. Mathematically distance becomes a metric in the Hi lbert

Space of code symbols. This metric is used to determine the error correcting

capability of the code. Let "d" be the minimum distance (metricwise) between

code words.

One other concept must be introduced before the bit error proba-

bility can be bounded, and that is the code transfer function, T(D,N). Let

D and N be dummy variables, i.e., of no particular interest in themselves.

Let the power of D be a number equal to the number of ones outputted by the

encoder when switching states, e.g., in Figure 3.14 a 11 is outputted when

going from state c to a or a to b therefore replace the 11 by a D2 (see

Figure 3.15).

DN

d= 11

a=0 b=Ol N C=J a=0

FIGURE 3.15 STATE DIAGRAM LABELED ACCORDING TO DISTANCE
AND NUMBER OF ONES
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3.2.2 CONVOLUTIONAL ENCODING

Two examples of convolutional encoders were shown in Figures

3.10 and 3.11. In general the encoder is a finite-state linear machine

having K shift register stages and n linear algebraic function generators.

Although the input data need not be binary, the binary case is by far the

most common, and so it will be assumed hereafter.

The constraint length of an encoder was defined in Section 3.2.1

to be the number of stages in the register. This is deceiving except in

the case that one bit is shifted per multiplexer cycle, i.e., b = 1. If

b = 2, for example, a constraint length K = 2 encoder can be as shown in

Figure 3.16 with its state diagram shown in Figure 3.17.

A less ambiguous definition of constraint length is "the number

of multiplexer cycles over which a given data bit has influence on the ouipul."

The longer the constraint length, the longer is the influence of a given bit,

and the more information that is sent about that bit. In Figure 3.16 it is

seen that due to the two bit shift per cycle a given data bit only stays in

the encoder for two cycles; thus the constraint length is two.

The major question to be answered in this section is what is the

best way to connect the mod-2 adders to the register stages, i.e., given a

certain length shift register and a particular number of adders what is the

connection set which will make "d" the largest. Simply stated the only way

to find out is to try all of the combinations and measure the results.

One other factor is important in choosing a code. It is possible

to pick a code which will generate an infinite number of errors if certain
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B 0 B B 2 B 3

FIGURE 3.16 CODER FOR K=2, b=2, n=3, AND R=2/3

110

lOO Oll

100 011

0Oi

011 010

111 001

010 100

001

111 101

110 .010
101

000

FIGURE 3.17 STATE DIAGRAM FOR CODE OF FIGURE 3.16
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.conditions occur. This is called a catastrophic error code. An example is

shown in Figure 3.18. Suppose all zeros were sent, i.e., we should stay

at state "a" forever, and suppose an error caused us to go to state "d,"

then we can never get back to the "a" state because the self loop of state

"d" outputs coded O's for input l's just like it would for input O's. The

decoder would assume that 1's came in instead of O's, thus one error in the

channel causes a decoder to output an infinite number of 1's, i.e., errors

iall O's sent).

N

N D D

C0 5- 01 *b c 1 S- 00

FIGURE 3.18 CODER DISPLAYING CATASTROPHIC ERROR PROPAGATION

The object of the game, therefore, is to pick a code with the

largest minimum distance which is not catastrophic. This has been done for

a number of constraint lengths, rates, etc.

Further discussion of choosing codes will be found in the sections

on decoding since some codes are better suited to, say, sequential decoding

than, say, feedback decoding and vice versa.

As a final comment on encoding it can be seen that the complexity

of the encoder is negligible, thus the impact on a power/space/weight limited

vehicle is very small. This is not true of the decoders in general but they

are usually on the ground where this is not a severe problem. This is a big

advantage of convolutional coding.
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3.2.3 CONVOLUTIONAL DECODING

While the encoding procedure and hardware is well defined, the

method to be used for decoding a convolutional code is not. There are

probably as many decoding schemes as there are people to think them up.

In the following three sections of the report, the three most common methods

used for decoding convolutional codes will be presented. The decoding

algorithms will be developed, and typical implementations shown. For

sequential decoding and maximum likelihood decoders much more detailed

designs which are geared towards the IMEMD/H missions will be found. This

is because the required coding gain of the missions (>5 dB) eliminates feed-

back decoding from consideration, i.e., long constraint lengths are required

in feedback decoders to achieve this gain and this makes them too complex

and costly. This will be seen more clearly after the next section is

introduced.

3.2.3.1 FEEDBACK DECODING(23 )

Feedback decoding of convolutional codes is the most straight-

forward of the three major decoding techniques discussed in this section,

and it is also the easiest to implement when short constraint length codes

are involved. Feedback decoders grew quite naturally out of well known

decoding schemes for block codes. An example will help to introduce the

algorithm. Consider Figure 3.19; this is the same as Figure 3.12 with

less branches shown.

The operation of a feedback decoder is as follows. Suppose a

data stream of 101 was sent. This implies that the coded symbols are 111000.

The decoder looks at the first two branches (box A) of received data, viz.,

1010; it compares it with all possiblities in the tree. The closest branches

are 1110, therefore, it assumes an error was made and that the data 10 was

sent to give the branches 1110.
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r: 10 10 11 1(received data sequence)
II I

FIGURE 3.19 TREE CODE AND RECEIVED DATA

At this point the first information bit is decoded as a 1, and

sent out of the decoder. The decoder now assumes that the upper paths of

the tree leading to points u and v are eliminated and creates a new tree

with point q as the starting point instead of point p. The whole procedure

starts over again, i.e., the next two received bits are brought in and the

1011 is compared with 1011, 1000, 0101, and 0110. The closest is 1011 and

so the next data bit is outputted as a 0.

Two things are important to note; they are that the number of

comparisons does not grow (remains constant) thus the number of comparisons

is dependent upon the depth into the tree chosen by the designer, and that

once a decision is made there is no court of appeals, i.e., the data bit

is lost forever. Overcoming this will be seen to be an advantage of sequential

decoders,
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Next let the power of N be a 0 if a data input 0 caused the state

transition and a 1 if a data input 1 did. Figure 3.15 shows the result of

relabling the state diagram as defined above.

The method introduced above is general for any system where path

parameters are to be accumulated, i.e., transfer functions multiply and their

exponents accumulate. The exponents are the key here. By Mason's rule (22)

the overall transfer function through any path can be calculated. Define it

to be T(D, N).

An important side point is that Figure 3.15 has broken the

"a to a" loop in Figure 3.14 with one "a" as the input and the other as the

output of the diagram. This can be done with any state, but the all zeros

path is convenient, and the results of the analysis of bit probability will

not change with the loop choice. This is so because of a property of the

code called the group property, namely, the er.ror correcting capability of

a group code is independent of the data input, i.e., if three errors are

corrected when all zeros are sent, then three errors will be corrected if

any other data sequence of the same length was sent.

With the above assumptions the probability of error, P(c) for a

given encoder is less than a certain function, viz.,

P(C) < erfc exp ' T) N) (3.16)
N0 K0- N=1, D=exp(-Es/NO0

where Es is the energy per coded symbol (recall d was the minimum distance

between code words).

erfc(x) i- f, e da
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Expression (3.16) looks complicated, but what it says is the

following. If no coding is used, then,

PNC(c) = erfc , (3.17)

whereas if coding is used the probability of error is less than this. The

reasons are because d>1 implies the argument of the erfc in (3.16) is larger

by the factor 2d>1 and because the factor

exp E DN)

SN=1, D=exp(-Es/N
0)

can be made less than 1.

As a concrete example, for the encoder of Figure 3.10

L erfc e-- ( 5E
P() erfc s~E/N (3.18)

Comparing performance with the uncoded system at Es/NO = 3 dB we get

-2
PNC(c) = 2.3 x 10- 2  uncoded (3.19)

-5
P(c) < 1.6 x 105 coded (3.20)

Suppose P() = 1.6 x 10- 5 then the Es/N 0 needed in an uncoded

system is 9.4 dB, which means that coding has produced at least a 6.4 dB

gain over an uncoded one, i.e., less than 1/4 the power need be transmitted

with a coded system. In a power limited project this is significant.

By way of summarizing this section on coding theory, it can be

said that in an ideal system using coding much less power has to be trans-

mitted due to the increased dissimilarity in the output symbols. The next few sub-

sections of the report deal with the degradations due to a practical system's

departure from the ideal case assumed in the preceeding discussion.

3-41



Now what determines how powerful the decoder is, i.e., why

would one decoder make less errors than another? It will be recalled

that the information about a particular.data is related intimately to the

constraint length, K, therefore it would be best to choose the depth into

the tree in any set of comparisons to be at least as great as the constraint

length. This however increases the complexity by 2
K since the number of

branches grows by this factor. It can be seen then that if K needs to be

large then the complexity gets out of hand rapid'ly.

It can be shown that the bit error proDability decreases

exponentially with K under the appropriate conditions, i.e.,

2-K R/R
P()< 2 (R 0 (3.21)

1-C(R /R)-1]

This was derived under the assumption of a maximum likelihood

decoder. Feedback decoding cannot be expected to be as powerful and indeed

it is not. The conclusion then is that the K needed with feedback decoding

is much larger than maximum likelihood decoding, and so feedback decoding is

only practical for moderate coding gains, say, 1 to 2 dB.

One might ask why feedback decoding is ever considered for system

designs. The answer is that sequential, maximum likelihood, and feedback

decoders are very sensitive to bursts of errors, such as might be due to

lightning or switching transients, and feedback decoding is the only one of

the three where this problem can be circumvented in the least complex manner.

This is done by delaying adjacent code bits long enough so that bursts of

errors do not corrupt a string of data relate.d bits, and the process is

called interleaving. In a feedback decoder the interleaving can be done as

Ro is the practical channel capacity.
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an integral part of the encoder and decoder, whereas in the other two schemes

for decoding the interleaving must be done externally.

Since feedback decoding will not be considered any further for

this study due to the reasons given above a detailed design will not be

attempted, however, two examples of these decoders will be presented below

in the interest of completing the topic.

Consider( 8 ) the operation of the single error correcting decoder

shown in Figure 3.20. A 1/2 rate systematic code is assumed so that every

other bit is an information bit. The commutator alternates so that information

bits are supplied to the data register and parity bits are supplied to the

lower adder. The upper adder recomputes the parity bits using the received

data bits. If there are no errors the lower adder output injects all zeros

into the 2-bit error register.

Now suppose that a single error occurs in the form of a received

parity bit error. The lower adder injects a "1" into the El position. Since

only a single error is assumed to occur no "correct pulse" is sent ("and"

gate is disabled). Subsequent -parity bits are correct and so zeros are

shifted into E1, eventually discarding the 1 out of E2 , thus a single parity

error has no effect.

Suppose that a single error occurs in the form of a received

data bit error. The upper adder outputs a "1" to the lower adder which, in

turn, injects a "1" into position El of the error register. Now since the

error is propagated to the B2 position the same process occurs and results

in a "1" being injected into position E2 from EI and a "1" injected into

position E1. This enables the "and" gate which sends an invert (correct bit)

pulse to the B2 position.
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Bits Correct Pulse

Received
Data Commutator -aUpper Adder "and" GateData

Lower
Adder E Error

Parity Bits 1 2 Register

FIGURE 3.20 CONVOLUTIONAL DECODER (SINGLE ERROR CORRECTING)

In terms of the tree of the code this decoder looks at seven

branches per decoding cycle. The upper register of the decoder is simply

a replica of the encoder used to generate the code. Everything works fine

as long as two consecutive errors do not occur. If this happens the decoder

fai Is.

The next example of a decoder shows how bursts of errors can be

corrected. In between burst errors there are good pulses for a fairly long

period of time so the codes developed previously are wasteful and inadequate

when the noise bursts do occur (mechanization complexity must always remain

a factor). A code which works well in burst noise (sometimes called impulse

noise) is one which makes use of the sequence of good bits in the stream to
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correct the bad bits and in doing so reduces.complexity. Consider the

following block diagram (Figure 3.21). The encoder shown operates by

Delayed Data Bit

P

Non Delayed Parity Bit

FIGURE 3.21 BURST ERROR ENCODER

performing a parity check on positions B1 and B4 .  It sends the parity bit

on alternate shifts of the register. An output code word might look like

P1OP2OP3OP40OP5OP6P711 P812 13P *

if the encoder operation started after 11 was shifted into position S1.

The burst correcting properties appear in the decoder as shown

in Figure 3.22. Assume that B1 thru B7 and T1 thru T10 contain correct

values, i.e., that a stream of good bits has been received. Now suppose

that a bad data or parity bit enters the decoder. The bad parity bit

doesn't alter anything since the "tap" in the parity register is in the

T7 position. However, a wrong data bit entering B1 generates an error in

Note that the parity check P 1 is sent long before I is sent. This fact
will have more significance when the decoder is studied.
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the R circuit causing an output of "1" to the "and" gate. Since the data

bit error is not present in the B4 and B7 positions, the Q circuit sends a

"O" to the "and" gate. This situation disables the gate and causes it to

disable the "B4/B 5 inverting circuit" so that the information bit in B4

shifts to the B5 position without inverting (correcting).

Invert

.B1 B2  B3 B4. t. 35 B6 B7 Data Output

Data Register

Rece i ved R
D ata *Ckt. - Ckt.

Commutator

T1 T2  T3  T4  T5 T6  T7  T8  T9  T10  Parity Register

FIGURE 3.22 BURST ERROR DECODER

When the data error propagates so that it is in the B4 position

it causes an error in the Q circuit thus outputting a "I1" to the gate. Now

assuming that B is correct the B4 error also causes the R circuit to output

a "1" to the gate. This enables the gate and it inverts the bit in B4 as it

shifts to the B5 position (note that when the data bit error is in the B4

position any parity bit error still hasn't reached the tap on the parity

register).
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The encoder/decoder discussed on the previous page corrects a

burst of length six, I.e., there can be at most three data bit errors and

three parity bit errors. Under this assumption there will be a "cleansing"

of the decoder before any new bursts of length six enter it. It should be

noted that since the parity taps are three bits apart any parity errors

cannot cause the R and Q circuits to simultaneously output 1's to the gate.

This encoder/decoder pair is much simpler than the circuits studied before

6nd yet corrects up to six errors, but it must be kept in mind that it fails

miserably if the bursts are not far enough apart.

For communications channels which are noiseless for long periods

of time, but for which many word errors are probable for short periods of

time, burst error coding works. The code depends on the long noiseless

periods to provide enough good bits to cleanse the decoder so that it can

correct the next burst of errors.

In summary, then, many different types of feedback decoders are

available depending on the application. These decoders are especially applic-

able to burst error channels, and are not powerful enough to be of much use

on random error channels.

3.2.3.2 MAXIMUM LIKELIHOOD DECODING

3.2.3.2.1 Maximum Likelihood Decoding Theory (20)

In this section, the Maximum Likelihood Decoder (MLD) and its

algorithm will be described. Since the MLD is one of two convolutional

decoders which can provide the coding gain needed for the IMEMD/H missions

(>5 dB) it will be analyzed to an extent sufficient to provide a firm basis

for a decision between it and sequential decoding (SD) in the final tradeoff.
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Cost, hardware complexity, network interface., and other factors will be

presented together with a block diagram of a practical decoder.

Maximum Likelihood Decoding of convolutional codes was first

introduced by Viterbi(24) and his description of it will for the most part

be followed here. More detail will be.given, though, so that the algorithm

can be better understood. It will be recalled from the convolutional coding

theory that a trellis representation of the code contained all of the infor-

mation about a particular encoder, i.e., given an encoder and the trellis,

the code output for any data input could be generated.

The encoder of Figure 3.10 and its trellis of Figure 3.13 are

reshown in Figure 3.23 below. Consider in detail how the trellis comes about.

The encoder stages BO and B1 are defined to be the state of the encoder. Now

given any two consecutive states the value of the encoder stages and the coded

output can be found, e.g., let the two consecutive states be, say, a = 00,

b = 01 then the register had BO = 0, B1 = 0 prior to the shift and BO = 0,

B1 = 1 after the shift, but since B1 = 1 after a shift implies B2 = 1 before

the shift, the register loading before the shift must have been BO = 0, B I = 0,

B2 = 1. Looking at the encoder adder inputs, the code output must be

010001. . 00 00 00 00 00 a,

11 11 \ 11 11

001101010010. 0 B0 •o Ol'0 o o 0

CODE SEQUENCE B DATA SEQUENCE o01 0oo 01 00 01\ 00

+,, X c A C
011100.. \ \

01 0 \d 01 d-
__ \ 10 o__

FIGURE 3.23 CONVOLUTIONAL ENCODER WITH TRELLIS DIAGRAM
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(BO + B + B2) , (B0 + B2) , i.e., (1), (1). In the trellis then we use a

dashed line if B2 = 1 prior to a shift and a solid line if B2 = 0. In the

example above looking at any point labeled "a", we follow a dashed line

to a "b".

Note that the wo.rd "any" was underlined in the above paragraph.

This is because the encoder doesn't care where the BoB1 stages got the zeros

or where in the data stream this occurred. It only knows that it has B0 = 0

and B = 0 right now! This concept is vital and is the basis for drawing

a trellis.

Now to draw a trellis from a particular encoder (assume binary

data, i.e., 0, 1 and one bit per shift) start with BO = 0, and B1 = 0 and

define this as state "a"; this is point 0 in the trellis (see Figure 3.23).

Now B2 will be assumed to have in it the first data bit. Suppose B2 = 0, then22

the next shift will cause the state to switch to BO = 0, B1 = 0, i.e., state

"a" this happen via a 0 data bit, therefore use a solid line from "a to a"

(point in the trellis). Suppose by contrast that the first data bit was

a 1 instead, i.e., B2 = 1, then after the first shift the state would be

BO = 0, B I = 1 (point U) in the trellis). Define BO = ,B = 1 as state

"b". Since a data bit of 1 was used to get from state "a to b" use a dashed

line in the trellis.

As can be seen in the trellis the output of the adders can be put

as labels on the branches from state to state to allow a user of the trellis

to find the coded stream. Note that given state "a" one can only end up at

state "a" or state "b" after a shift due to only two data bit possibilities,

viz., 0 or 1.
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Now given that we are either at state "a" (point ()) or state

b, (point C)) the previous process can be repeated indefinitely until the

trellis is drawn. To give a concrete example suppose the input data stream

was 10110. Assuming an initial state of "a" the state sequence goes as

follows; 00, 01, 10, 01, 11, 10, i.e., a to b to c to b to d to c where the

states are defined as in Table 3.14.

state a: B0 = 0, B = 0

state b: BO = 0, B = 1

state c: B0 = 1, B = 0

state d: B0 = 1, B = 1

TABLE 3.14 STATE DEFINITIONS

This path is shown as a cross hatched path in Figure 3.23. Note

that if the states are overlapped that the data bit stream is recovered. In

the example above one has

a c d 001011

b b c 010110 =>10110.

In terms of a decoding algorithm consideration of the trellis

shows a technique to follow. Assume for the moment that the Hamming distance,

i.e., the number of bits different between two binary sequences, is applicable,

e.g., d(000,101) = 2 and d(000,111) = 3. Suppose the first six received (noise

corrupted) bits were 010001. Looking at the trellis this sequence is closer

to 000000 than 111011, i.e., the two paths to the first state "a" (point )

in Figure 3.23). The distances are 2 and 3, respectively.
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Consider now the first eight received bits, say, 01000111. The

distances to state "a" after eight code bits (point ® in the trellis)

assuming it has passed through state "a' after six code bits (point @ in

the trellis) is 4 or 5. There are two ways of arriving at these figures.

The first is to brute force compare 00000000 with 01000111 and 11101100 with

01000111. The other way, which is the basis of the algorithm,is to simply

take the distances up to state "a" after six code bits and add on the differ-

ential (transition) distance to the next state "a", i.e., Ad(00,11) = 2.

The important point of the above is that once the best path up

to state "a" has been determined there is no need to keep any inferior paths

because the total distance will only change with new code bits.

The algorithm is then as follows:

1. Initially, calculate the distances between all paths leading
to all of the states and the received sequence up to and
including a depth into the trellis or tree of K branches.

2. Pick the least distance path to each state (call these the
survivor paths) and throw away the others, i.e., drop them
from memory.

3. Again for all the states, calculate the differential distances
between all paths leading to the states and the next received
code sequence branch.

4. Add these differential distances to the appropriate survivor
distances so that a continuous path results to a state.

5. 'Comparing all distances to a particular state, choose the
path (survivor + differential path) with the least distance
(this is the new survivor to the state). Do this for all states.

6. After a suitable number of branches have been received look
at the first bit of all hypothesized data sequences (a result
of iterations of the above). Choose the bit which is in the
majority.

Elaborated on later
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7. Continue in this manner until all data has been decoded

realizing that the last state will be forced to state "a"

by -injection of zeros into the encoder at the end.

If the decoder follows the above algorithm, it can be shown

that the decoder is a maximum likelihood decoder, thus all the theory developed

previously applies to data decoded in the above manner.

In a practical decoder there are several details and implications

of the MLD which must be considered. These are:

o Choice and calculation of the distance function (metric)

o Comparison of paths

o Storage requirements

o Branch synchronization, i.e., where does a branch start?

o Quantization of the distance function (metric) for digital
processing

o Overflow of metric storage

o Underflow of metric storage

o Number of branches stored before making a data bit decision

(path delay)

o Provision for coin flipping in case of a tie in decisions

o Parallel versus serial implemenation (depends of data rates)

o Code restart after burst errors

o Logic speed versus code rate

o Transparent versus non transparent codes

o decoding delay

o noisy reference and timing

o memory and buffer size

Some of the above are an obvious consequences of a practical

rather than theoretical decoder implementation and will not be discussed;
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the rest will be touched upon as the design.of the decoder given below

evolves.

3.2.3.2.2 Maximum Likelihood Decoder Design

The error correction unit described in this section will consist

of a rate 1/2 convolutional encoder with a Viterbi (Maximum Likelihood)

decoder. The encoder/decoder design will accommodate bit rates up to 20 kb/s,

thus the maximum desired operating rate of 16 kb/s will be covered with leeway

for some adjustment in the rate. The units can use large scale integrated

(LSI) circuitry to optimize speed, space, and power if required.

The performance of Viterbi decoding when used with optimal (maximum

distance) codes is shown in Table 3.15 along with a non-optimal transparent

code chosen for comparison purposes. The values in the table were obtained

by computer simulation.

The error correction unit which was chosen was a K=7, nonsystematic,

transparent, and noncatastrophic convolutional code with the corresponding

Viterbi decoder. This decision was based on the following factors:

1) The required value of Eb/NO can be obtained by the
encoder/decoder de.sign.

2) Low power considerations can be met with the design.

3) The transparency of the code offers no degradation in

Eb/NO if differential encoding were not used.

4) The K=7 specification requires the least amount of

complexity in hardware for the coding gain required.

The following sections, however, offer trade-off performance

curves for the constraint lengths of five, six, and seven for completeness.

The encoder design is discussed here since it is matched to the decoder.
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Uncoded Uncoded K =7 K = 6 K = 5 Optimal Code
Output CPSK DCPSK Coding Gain Coding Gain Coding Gain Coding Gain

Error Rate Eb/N0 Eb/NO Eb/NO over CPSK b 0 over CPSK Eb/NO over CPSK over DCPSK

1x10 - 5  9.6 9.9 4.4 5.2 4.9 4.7 5.2 4.4 4.7

Ix10 - 4  8.4 8.8 3.7 4.7 4.1 4.3 4.4 4.0 4.4

1x10 - 3  6.8 7.3 3.0 3.8 3.3 3.5 3.5 3.3 3.8

1x10 - 2  4.3 5.2 2.1 2.2 2.3 2.0 2.4 1.9 2.8

K = 5 Transparent Code (A-Decoded)

Output Eb/NO Coding Gain- Coding Gain
Error Rate over CPSK over DCPSK

1x10 -5  5.6 4.0 4.3

1x10 - 4  4.8 3.6 4.0

1x10 - 3  3.9 2.9 3.4

1x10-2 2.8 1.5 2.4

TABLE 3.15

VITERBI DECODING OUTPUT ERROR RATE PERFORMANCE

Soft Decision Q = 8
(No A-decoding except the K=5 transparent code)



Interface considerations are offered in the following sections together

with the hardware approach and some design factors for the coder/decoder

unit.

3.2.3.2.2.1 Performance of the Maximum Likelihood Decoder

In this section, the performance of the maximum likelihood decoder

for K=5, 6 and 7; rate 0.5; convolutional codes will be presented. The codes

studied are listed in Table 3.16. The constraint length 5 and 6 optimal

codes are nontransparent to phase reversals while the constraint length 5

nonoptimal and constraint length 7 optimal codes are transparent.

CONSTPRAINT LENGTH CODE POLYNOMIAL

5 (nonoptimal) 11001i
10 0 1 1

5 (optimal) 101101

6 (optimal) 1.01011
f1111001

7 (optimal) U011011}

TABLE 3.16

CONVOLUTIONAL CODES STUDIED

A code is transparent if the coded output sequences of two comple-

mentary information input sequences are themselves complements of one another.

Transparency of the code can be useful in a system which may have a phase

polarity ambiguity but it is in no way a requirement, e.g., a phase reversal

detector can be incorporated into the decoder itself in lieu of the trans-

parency.
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The codes shown in Table 3.16 are the optimal codes for their

constraint length except as noted. Optimality is defined here as possessing

the largest minimum free distance among all codes of identical constraint

length.

From a hardware standpoint, it is desirable to use a.code of

short constraint length (K) since as the constraint length of the code is

increased, the hardware growth is exponential (due to the increase number

of states). Another hardware problem is to choose the length of the path

memory truncation or decoding delay. . The problem here is to determine the

minimum number of bits to be retained in the path memory without a signifi-

cant loss in performance. Since there are 2 K- 1 path memories, storage must

be allocated for (N 2 K- ) bits where N is the number of bits retained in

each path. It will be seen later that five constraint lengths will be

sufficient (N=5K).

The channel will be modeled as an Additive White Gaussian Noise

Channel for all simulations in this section. This is an accurate model for

satellite links. As a reference, the probability of a bit error as a function

of the signal-to-noise ratio (Eb/N O ) for ideal CPSK and differentially encoded

PSK (DCPSK) is shown in Figure 3.24. A typical error rate of interest is

-5
10 which for CPSK is achieved at Eb/NO = 9.6 dB; and for DCPSK, at 9.9 dB.

3.2.3.2.2.2 Decoder Delay and Constraint Length

The performance as a function of code constraint length and

decoding delay is considered in this section. For the results presented

in the following, the decision statistic for the most delayed bit in the

path memory is the most likely path metric. Also, the allocated metric

storage is four bits with provisions for clamping and resetting.

Due to the most recently received branch
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The performance curves for the soft-decision maximum likelihood

decoders for constraint length 5, 6, and 7 codes are shown in Figures 3.25,

3.26, and 3.27. The soft-decision inputs are uniformly quantized to three

bits.

Figure 3.25 shows the performance of the constraint length 5

soft-decision maximum likelihood decoder for various decoding delays. The

performance of the soft-decision decoder improves with increasing decoding

delay. However, for a decoding delay greater than 5 constraint lengths,

the return is insignificant. An average error rate of 10- 5 for the con-

straint length five optimal code with a decoding delay of five constraint

lengths is achieved at Eb/NO = 5.25 dB. This represents a coding gain of

4.4 dB over ideal two-phase PSK.

In the case of the transparent code there is a 0.2 dB loss over

the optimal code shown in Figure 3.25 because the distance is 6 as opposed

-5
to the optimal of 7. At 10- 5 bit error rate, then, the coding gain is only

4.2 dB over coherent PSK.

Figure 3.26 shows the results of the simulation of the soft-

decision maximum likelihood decoder for the constraint length six code with

variable decoding delay. The chosen decoding delay is five constraint

lengths. For a decoding delay of five constraint lengths, the constraint

length six soft-decision maximum likelihood decoder achieves an average

-5
error rate of 10- 5 at Eb/NO = 4.9 dB for a coding gain of 4.75 dB over

ideal two-phase PSK.

Figure 3.27 shows the result of the simulation of the constraint

length seven soft-decision maximum likelihood decoder with variable decoding
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delay. To attain a coding gain of 5.0 dB or greater over ideal two-phase

PSK, the decoding delay necessary is five constraint lengths. For a decoding

delay of five constraint lengths, the system performs at Eb/NO 
= 4.4 dB

for a coding gain of 5.25 dB. This was a prime reason for choosing K = 7 for

the decoder design.

3.2.3.2.2.3 System Interface Considerations

The influence of the system interface on the coder/decoder is

summarized in the synchronization, inversions due to phase slips in the

PSK demodulator, and the quantization of the inputs to the decoder.

One of the most critical parts of the system is the quantization

of the soft decisions. The equally spaced quantizer is shown in Figure 3.28

for eight levels. The input analog voltage is limited to a maximum signal

excursion of +K E-- where Jv' is the mean value of the magnitude of the received
s s

waveform. The spacing between the levels is given by

2KE-

Q= N (3.22)

The output of the quantizer is a three-bit number. The sign bit represents

the hard decision on the received channel symbol and the remaining two bits

represent the magnitude of the associated confidence level.

The error performance of the decoder is sensitive to the spacing

Q selected. Since the level of quantization is fixed to be three bits and

to be uniformly spaced, the problem is the selection of the optimum signal

excursion as input to the quantizer.

Figure 3.29 shows the results of the optimization procedure

simulated on a computer for the constraint length 7 optimal code with a soft-
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*decision input of 3 bits. An optimum spacing can be chosen using

results such as these.

At the receiver (decoder) two timing problems arise during the

transmission of data by a two-phase PSK system. They are the initial node

synchronization on the code symbol pair of the rate 1/2 convolutional code

and the monitoring of this synchronization. To monitor sync, the receiver

i.s required to detect when a sync error (bit slip) has occurred and initiate

action to recover from sync error.

Code symbol (node) synchronization within a branch is necessary.

Clearly, if the wrong decision of code symbol pairs is made, the decoder

will constantly make errors thereafter. This situation can be detected

because the mismatch of code symbols will cause all path metrics to be

large, i.e., there will be no correct paths.

A method of detecting this condition is to count the number of

metric resets that occur over a specific time interval. If the resets. occur

too frequently, the decoder can assume that it is out of sync and initiate

the appropriate action for correction. Figure 3.30 shows the number of

metric resets per bit as a function of Eb/N 0 for the contraint length 5

maximum likelihood decoder operating in the out-of-sync and in-sync modes.

Note that the number of metric resets is essentially constant for the out-

of-sync mode, whereas for the in-sync mode, the number of resets decreases

as Eb/NO increases. Similar results hold for the K = 7 length code.

Another method of detecting sync errors is to accumulate the most

likely path metric and compare it to a threshold after a specific time inter-

val. This can be considered as a finer grating of the reset counting method.
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The first of these methods was chosen for the initial synchroni-

zation and monitoring problems since it is simplest to implement.

The carrier tracking loop introduces another problem. The tracking

loop is subject to phase flips which will cause the coded bits to be inverted.

That is, a zero will be received as a one and a one as a zero.

If the convolutional code is transparent, however, the bit inver-

sions can be compensated by. DCPSK encoding. The maximum likelihood decoder

will operate without loss of performance after the phase flip has occurred

and the decoding memory associated with the actual time of the phase flip

is shifted out.

If a nontransparent code was used, the maximum likelihood decoder

will act as if it were out of sync. Errors will propagate and the metric

will grow rapidly. When a nontransparent code is used, the decoder can be

in the following out-of-sync modes:

1) bit inversion and in-sync

2) bit inversion and out-of-sync

3) out-of-sync without a bit inversion

Figure 3.31 applies for conditions 1) and 2) above. Therefore, it may

take longer for the decoder to obtain synchronization.

It should be noted also that when a nontransparent code is used

bit inversions due to phase flips must be accounted for within the decoder.

On the other hand, when a transparent code is used bit inversions are

accounted for by external sources, i.e., with DCPSK coding and decoding.

In order to obtain an indication of the decoded error rate (error

rate after decoding), one c-an just integrate the average number of resets
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-which is monotonically related to the probability of an error. Figure 3.32

illustrates this point by plotting the probability of an error as a function

of the average of resets.

3.2.3.2.2.4 Design of a Coder/Decoder with Constraint Length 7

The following section describes the design of a convolutional

encoder and decoder for transmission of data at rates up to 20 Kb/s, and

therefore will more than accommodate the data rates for the telemetry links

in the IMEMD/H missions.

The parameters chosen are given in Table 3.17.

Code Rate: 1/2 (nonsystematic)

Constraint Length: K=7 bits

Decoder Input Quantization: 3 bits (8 uniformly spaced levels)

Path Delay: 5 constraint lengths

Path Selection: Most likely according to metrics

TABLE 3.17

PARAMETERS FOR CODER/DECODER DESIGN

Figure 3.33 is a block diagram showing the inputs and outputs

of the convolutional encoder. The encoder operates with the channel modulator.

Clock signals at rates R and 2R are derived from a local reference. Data at

clock rate R are fed into the convolutional encoder from a synchronous source.

The output of the convolutional encoder is the serial coded data sequence at

a clock rate 2R. Output data from the convolutional encoder switches in

response to positive-going edges of the clock.

Figure 3.34 shows the configuration for the maximum likelihood

convolutional decoder. Three-bit soft-decision statistics are brought from
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the quantizing unit on three parallel lines, one line for each bit of the

soft decisions. The output of the convolutional decoder is the reconstructed

data sequence that appeared at the input to the convolutional encoder. The

convolutional decoder requires clocks of R and 2R. All output data moves in

response to the positive edge of clock R.

Figure 3.35 shows the rate = 1/2, K=7 convolutional encoder.

Data bits are entered serially into a seven-bit shift register. For each

new input data bit two coded bits are generated by the encoder. Each coded

bit is generated by a modulo-2 adder that derives its input from several of

the seven stages of the shift register. In this manner each coded bit is

a function of the new data bit in the register and the six data bits pre-

ceding the new data bit in time. The six previous data bits which occupy

the last six stages of the shift register are by definition the encoder state.

The coded bit pair is time-multiplexed into a single line for

transmission at twice the data clock rate. Interface circuits are provided

at the input and output of the encoder to translate the logic levels of

interfacing equipment to that of the logic used in this system.

The function of the decoder is to reconstruct the data stream

fed into the encoder from the soft-decision coded bit pair that the decoder

receives from the channel modem. The reconstruction is achieved by deter-

mining the most probable sequence of states progressed through by the

encoder.

Figure 3.36 is the block diagram for the decoder. The three-

bit soft decisions from the quantizing unit are received serially by the

Metric Transition Generator.at twice the data rate (i.e., at the coded data
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rate 2R). From each pair of soft-decisions received the Metric Transition

Generator calculates a probability measure on each of the four possible

magnitude values (i.e., 00, 01, 10, 11) of the associated bit pair. The

metric transitions are combined with the metrics from the past in order to

generate a new set of metrics. Since the data rate is low, the above can

be done serially thereby reducing the complexity.

Each metric indicates the reliability of the most probable data

path ending in a specific encoder state. Since for a K=7 code there are 64

encoder states, it is necessary to generate 64 metrics in a sequential manner.

From an examination of the possible sequence of encoder states, it is known

that for each new data bit an encoder state can go to only one of two encoder

states and conversely any encoder state can be accessed from only two encoder

states. From each metric two new metrics are generated, corresponding to

the two new states the old state could have progressed to with a new data

bit. The two new metrics are calculated from the old metric in the following

manner. The first new metric is the old metric added to the metric transi-

tion resulting from a zero (0) as the new data bit in the encoder register.

The second new metric is the old metric added to the metric transition if a

one (1) had been the new data bit.

In this manner a set of 128 new metrics is eventually generated

by the adder. The metric comparator performs a pairwise comparison for each

pair of metrics leading to the same states. Each comparison selects the most

probable of the two metrics. The most probable metric is indicated by the

metric of minimum numerical value. The surviving metrics are then placed via

the metric multiplex in the position assigned to their states in the metric

storage. The surviving metrics now become the old metrics for the next coded

bit pair received.
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In addition to determining the surviving metric, each comparison

makes a decision on the most delayed bit in the encoder register. This is

due to the fact that the states from which each set of parallel paths is

derived can only differ in the most delayed bit position. Therefore, each

path bit decision from the metric comparisons is, in effect, delayed six bit

intervals from the time it was estimated to enter the encoder register. The

bits resulting from each comparison are stored in the path storage.

The path storage corresponds to the sequence of bits or path

leading to the state of its corresponding metric. When a comparison and

a new bit decision are made, that bit must be added to the path associated

with the metric from which the new metric was derived. The new path must

then be placed in the storage position associated with the new metric.

The result is that the path storage will contain 64 paths, each of which is

associated with a metric in the metric storage. The paths are allowed to

accumulate for a number of bits equivalent to five constraint lengths of

delay from the new data bit positions of the encoder. For any one path

five constraint lengths of delay is equivalent to thirty-five bits, therefore,

each path consists of 35 bits.

At each data bit interval the most probable metric in the metric

storage is detected. The most delayed bit (i.e., the 35-th bit) in the path

associated with that metric is chosen as the decoded data bit by the data

bit selector.

The metric transition generator calculates a probability measure

on the received coded bit pair for each of the four possible received sequences.

The four metric transitions (LC C) are defined as follows.
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Let rl, r2 be the quantized soft decisions on received bits #1

and #2, respectively, of the coded bit pair (see Figure 3.28). Let

0 0 if rl<O
C= - (3.23)

1 if r1>0

C2 = (3.24)
1 if r2>0

and

= r 11 (3.25)

a2 = r2 1 (3.26)

Then the metric transitions are given by (see Appendix E)

L00 = a1 C1+a2*C 2  (3.27)

L11 = al*C1+a2'C2 (3.28)

L10 = a1 C1+aC2*2 (3.29)

L01 = IC1 +a2 2 (3.30)

where a bar over a number indicates its complement and a. is the absolute

value of the soft decision. These metric transitions are chosen such that

a positive soft decision represents a received 1 and a negative soft

decision represents a 0.

Figure 3.37 is the block diagram for the metric transition

generator. The three-bit soft decisions are entered into the r 2 and rl

registers at the coded data rate. The least significant two bits of rl and

r2 (i.e., al a2 ) are fed to the inputs of a two-bit adder via NAND gates.

The NAND gates will allow or block the adder inputs as dictated by the most

aiCi = 0 if Ci  0 (blocked a ); a iC = ai if Ci = 1 (allowed a i)
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the metrics. This is accomplished by detecting when the most significant

bits of all metrics are set and then causing them all to reset at the same

time. By employing these overflow protections it is possible to limit the

metric storage for each metric to four bits and still obtain a performance

which is essentially the same as that possible for infinite metric storage.

For each encoder state, there is a-path memory which contains a

record of the surviving path leading to that encoder state. Hence there

are 64 path memories for the constraint length 7 code. Each comparison

between parallel paths leading to the new encoder state, in addition to

determining the surviving metric, also determines the surviving path and

the.newest member of that path. The newest member is a zero or a one

depending on the old state from which the transition occurred. If the old

state has a zero (one) in the most delayed state position, a zero (one) is

appended to the surviving path. The choice of the most probable of the two

metric states dictates the selection of this bit.

Selection of the most likely path is made on the basis of compari-

son of magnitudes of the metrics; the path register output corresponding to

the lowest metric is selected. The most likely path is obtained by selecting

one of 32 paths, using five levels of comparison and selection logic;

then extending this comparison to one more level, selection of one of 64

paths is accompl.ished. The path register final stage outputs are connected

to the first level inputs. A typical "cell" contains a four-bit parallel

comparator, a two-input four-bit multiplexer and an AND-OR-INVERT circuit

which serves as a two-input one-bit multiplexer. The comparator produces

a logic ONE at the output opposite the input of smaller magnitude, or at

both outputs if the inputs are equal. The smaller metric input to each cell
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thus appears at an input to the following cell. At the same time, the path

register output corresponding to the smaller metric is routed through the

AND-OR-INVERT circuit. Note that if the metric inputs to a cell are equal,

both path register outputs are OR-gated;'a logic ONE at either produces a

ONE at the output, an acceptable situation since either choice of path is

equally good in such a case.

The input to the decoder consists of a succession of soft decision

A/D outputs following the integrate-and-dump circuit of the quantization unit.

The soft decisions are processed in pairs, eich pair corresponding to the pair

of coded bits generated by the encoder each time a new data bit is generated.

Computer simulation shows that the metric corresponding to the

most likely path increases in magnitude considerably faster when out of

synchronization than when properly synchronized. Therefore, resetting of

the most significant bit of all metrics (which occurs at times determined

by the smallest metric, which is by definition that corresponding to the

most likely path) occurs more frequently in the out-of-synchronization

condition.

As seen previously a phase reversal can cause node synchronization

difficulty; the decoder must monitor the metrics to recognize a two-correct-

out-of-four condition. Table 3.18 summarizes this. The metric resets provide

the clue to any difficulty.

SYNC PHASE SLIP CORRECT/INCORRECT

in 0 radians correct

out 0 radians incorrect

in w radians correct

out w radians incorrect

TABLE 3.18
SYNCHRONIZATION AND PHASE REFERENCE MODES
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3.2.3.2.3 Maximum Likelihood Decoder Cost

The decoder presented previously is similar in theory to any

state of the art decoder; as such it was felt that an available hardware

design would be the most helpful in representing typical costs of a Viterbi

decoder of the kind presented in this report. Per reference 25 the following

data is listed.

o Manufacturer: Linkabit Corporation

o Model: LV7015

-5
o Coding Gain: 5.1 dB at 10- 5 bit error probability
o IC Complement: 82 units, TTL

o Data Rates: up to 100 kbps

o Code Rate: 1/2, nonsytematic

o Constraint Length: K=7

o Decision Scheme: soft, Q=8

o Cost: $5,000 each in lots of one

$4,500 each in lots of five

3.2.3.3 SEQUENTIAL DECODING

In this section the theory and implementation of sequential

decoding will be discussed. As with the Maximum Likelihood Decoder (MLD)

enough detail will be given in the decoder design so that a recommendation

between it and the MLD can be made.

3.2.3.3.1 Sequential Decoding Theory (Fano Alaorithm)

Consider the code tree representation of the example convolutional

code given in Figure 3.10 repeated here as Figure 3.38.

To oversimplify things for the moment, a sequential decoder

assumes a path through the tree is correct; i-t calculates the metric between
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FIGURE 3.38 TREE-CODE REPRESENTATION FOR CODER OF FIGURE 3.10

this "best path" and the received sequence up to that time. If this metric

value does not violate a running threshold, which changes constantly, then

the decoder assumes the path is correct. If, however, the threshold is

violated then other paths are tried until the threshold is not violated.

If, as often happens, the threshold is violated for all paths then it is

increased, and all paths are tried again, etc., etc..

As can be readily deduced from the above if a wrong path is

chosen at any point in the algorithm, then the decoder must back up; this

consumes time. If the errors are few and far between the chances are that

the correct path will be chosen and the decoding will keep moving deeper

into the tree at a rapid rate. On the other hand if, say, a burst of errors
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came in or a great number of random errors occurred then the decoder would

have to back up frequently; but data keeps coming, therefore, the decoder

buffers finally reach a point where they cannot store anymore data, and they

overflow resulting in a complete breakdown of the decoder error correction

ability.

The probability of overflow is one of the most important design

criteria in a sequential decoder design since the results of an overflow are

so disastrous. Unfortunately it depends on the number of computations done

per node in the tree, call it N, which is a random variable dependent in a

very complex way on the code and the channel noise. It is generally agreed

(26)(27)
that N follows a Pareto distribution in the cases of interest, i.e.,

P(N > N ) = kN (3.31)

Once a particular code has been chosen a simulation can be done. From the

results of the simulation the above distribution can be determined by a

curve fit; for that matter, the simulation will also give the bit error rate

charcteristics of the code with sequential decoding. As can be seen from

the above, most of the work in designing a good convolutional encoder/

sequential decoder (CE/SD) system is in preparing and evaluating the output

from computer simulations.

To be a bit more precise now, the following sections will

introduce and analyze a basic form of sequential decoding, viz., the

Fano algorithm; although there are many variations on it the essentials

remain the same. The algorithm is shown as a flowchart in Figure 3.39.28)

The parameters in the figure will be defined as the discussion progresses.

1 is the Pareto exponent.
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FIGURE 3.39 FLOWCHART FOR THE FANO ALGORITHM

The algorithm is started at the origin of the tree. The metrics

for all paths leading from the origin to the next nodes are calculated; there

are usually only two, but there could be more if more than one bit per shift

were implemented in the encoder. The path metrics are compared and the

largest metric (L1) path chosen, i.e., "the best." Next L1 is compared with

the running threshold, T. If no errors occurred and T wasn't too large,

then L >T and the upper path out of the decision block is taken .. After this

-1-N

L1 is compared with T+To, where To is a predetermined constant; this is to

allow T to be set to its maximum value without L1 violating it. If it is

violated, i.e., L1<T+T then the algorithm moves to the node #1 and recycles

from the beginning. If L1>T+T ° the threshold is increased or if F=O left

alone and recycled.
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The above was if LI>T. If L <T then F is set to 1, and the lower

path is taken. If the node under consideration is not the origin, the

algorithm backs up one node. If the previous node also violates T then the

next best branch is chosen (next highest metric) unless of course there

Isn't any, in which case the algorithm backs up again. If the previous

node didn't violate T then it is assumed that the threshold was too large;

it is lessened and the algorithm recycled.

From the brief description above, it is seen that the parameter

T affects the amount of computational effort during a search. As To is

reduced the decoder becomes more responsive to incorrect decisions but at

the same time makes it more prone to label a correct path as incorrect

due to noise. This, on the average, results in numerous short searches.

Conversely, a large value of To means a correct path is less likely to
0

be confused with an incorrect one due to noise but the decoder will take

longer to respond to a wrong decision. This results in fewer but longer

searches on the average. The best choice for To depends on channel

conditions and thus should be determined experimentally orby simulation.

Investigation of the behavior of T is discussed in a later section.

At this point in the discussion, it may be of interest to compare

the maximum likelihood and sequential algorithms. If the same metric is

used for both, then the essential difference between the two is that the

maximum likelihood looks at all paths leading to a point in the tree and

picks the best one, whereas the sequential doesn't look at all paths, but

rather only looks at those paths which do not violate a threshold. The

best path in the maximum likelihood algorithm, then, as it becomes longer

is allowed to exceed the threshold of the sequential algorithm as long as
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it eventually (whenever a decision is made) ends up as the one with the

best overall metric. This best path, if a sequential decoder were used

could be thrown out at an interim point'in the algorithm, but hopefully

would be chosen again as the threshold was adjusted.

The conclusion is that since the maximum likelihood algorithm

(24)
looks at all paths, it is better; in fact Vi-terbi has shown that it is

optimum. The sequential algorithm is therefore suboptimum. Since all

paths in a MLD must be looked at for a given constraint length K, the

operations required increase by 2k . The sequential decoder thus has an

advantage here.

Proceeding now with the sequential algorithm di'scussion, it will

be recalled that the code rate was defined to be the.number of information

bits encoded per code bit output, e.g., a rate 1/2 code implies that two

code bits come out of the encoder for every data bit going into it. Ideally,

the larger the code rate the better since this requires less bandwidth,

however, just as in FM, there is a point where the "improvement" of the

coding system disappears, sort of its threshold. The applicable parameter

in sequential coding is called Rcomp , i.e., the computational cutoff rate.

comp

on this channel with sequential decoding is R=R =0.5. It is generally,comp

true, however, that if R is much more than 0.9 R then the sequentialcomp

decoder requires too many computations to do the error correcting job and

is thus very ineffective; at R=R the computations become enormous.comp

The Rcomp of a channel is dependent on the E b/N available

since if Eb/No were, say, infinite, then no coding would be needed,
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i.e., R comp=R=1. On the other hand, as E b/No decreases Rcomp also decreases

which forces more code bits per data bit to be used. All that is really

being said here is that a trade can be made between the quality of data

decoded and channel bandwidth. This is true in nonlinear modulation such

as FM and is a general property of communications systems. The key is to

make the "best trade."

Getting back to the main topic, the value of R for the
comp

infinitely quantized AWGN channel with a phase coherent modem is given by

Rcomp = 1 -log 2 (1 + exp(-R Eb/NO)) (3.32)

(28)
Defining E = R Eb/NO Figure 3.40 (28) plots Rcomp versus E/N0 per waveform

received.

CHANNEL CAPACITY FOR
THE UNQUANTIZED
GAUSSIAN CHANNEL

UNOUANTIZED1.0 - GAUSSIAN
CHANNEL

0i Q" a 

E/N, PER WAVEFORM IN db

FIGURE 3.40 RCOMP FOR A COHERENT GAUSSIAN CHANNEL
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Also shown is the effect of quantizing the output of the channel

into Q levels; this was discussed in the Viterbi decoder section.

Another curve in Figure 3.40 is the channel capacity of the

AWGN channel. As can be seen in the figure, R is well below the capacity
comp

of the channel; in fact even if R=Rcmp the minimum Eb/NO that can be used

with the channel is found by letting E/NO = EbRcomp/No go to zero. Using

L' Hopital's rule with respect to E/N0

E/N 2
lim Eb/N - Rcm = 2 1.386 (1.42 dB). (3.33)

b 0 R loge
E/NO 0 comp 1 2

Shannon's limit is -1.6 dB, therefore CE/SD is even theoretically

suboptimum. Since 1.42 dB is such a low number, though, sequential decoding

with convolutional encoding is a very powerful error correction technique.

From curves like Figure 3.40 R can be determined, i.e.,
Scomp

a link calculation is performed; the minimum Eb/NO is found; then the curves

give the value of R for a given quantization scheme.comp

The next task is find the metric to be used in evaluating paths

through the tree. The "log a posteriori" metric is optimum.and is given

in one form (binary) by

n-1 p(Y Ix ) n-1
Ln = log 2  p(y U = . (3.34)

=1 Ii=1

where Ln is the metric, n is the number of nodes in the path, yi is the

received branch, x i is the uncorrupted i'th received branch, p( ) is the
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probability density function, and U is a constant chosen to make Ln increase

on the average if correct paths are chosen and decrease if incorrect ones

are chosen.

It is found that U=R gives good results; also theoretically

p(yix i ) and p(yi) requires a knowledge of the variance of yi and YilXi

which is precisely a knowledge of NO , i.e., the noise density. This can't

be known a priori, but if the minimum Eb/NO is found as described in finding

R then the N corresponding to this can be used. Any less noise gives
.comp 0

smaller NO, but then Eb/NO is greater and the nonoptimality of NO is compen-

sated for by the greater signal to noise ratio available.

Finally the threshold increment TO must be chosen. Since it

affects the average number of computations required per node, it is chosen

to minimize this. A value of 5 bits (between binary representation of

analog thresholds) seems to be acceptable (actually the minimum is quite

broad).

Knowing all of the above together with the logic speed being

employed in the decoder several simulations are performed, From these the

probability of overflow is found, -and the decoded error rate is determined.

The reader interested in more design detail is referred to (27), (28).

A general comment on the sequential decoding technique is that

it is highly dependent on the incoming symbol rate and the logic speed, thus

if the rates are low (<50 kbps) then the sequential decoder complexity is

small. This is true even though the constraint length may increase. This is

the prime advantage of sequential decoding over maximum likelihood decoding,

and is the reason why it has remained a powerful decoding tool even though

it is a suboptimum algorithm.
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3.2.3.3.2 Sequential Decoder Design

The error correction unit described in this section will consist

of a rate 1/2 encoder with a sequential-decoder. The design will accommodate

bit rates up to 20 kbps, (information rate). Since the speed factor is so

important in a sequential decoder, it is not prudent to overdesign for bit

rates much higher than needed.

3.2.3.3.2.1 Performance of the Sequential Decoder

The following set of curves shows the performance of the sequential

decoding algorithm for several constraint lengths (Figure 3.41). Since the

Fano algorithm was used in all of the curves, it can be seen that for the

coding gain required by the IMEMD/H missions a constraint length of at least

K=24 must be used for Q=8 and K=47 for Q=2.. Because of this and because the

encoder selected by NASA (5 ) has a constraint length sufficient to do the job,

i.e., K=24 nonsystematic (equivalent to K=48 systematic), the analysis in the

next sections will be for it. This encoder is shown in Figure 3.42. It*

is readily seen to be a non transparent code.

+ 

P1

2

FIGURE 3.42 K=24 NONSYSTEMATIC CONVOLUTIONAL ENCODER
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This encoder has the nice property that even though it is

nonsystematic, the information bits can be recovered very easi ly by simply

inverting P2 and summing it modulo-2 with P1 since 0 + 0 = 1 + 1 = 0

modulo-2. This property can be used for a "quick look" at the data or to

bypass the decoding in case of a failure or in the event that high signal

levels are encountered (hot transmitter, etc.).

3.2.3.3.2.2 Soft Decision Metric

As discussed in Section 3.2.3.2.2.2 in connection with the MLD it

is wise to use soft decisions. As a side note the only practical reasons

for going to hard decisions, Q=2, is to decrease the complexity and increase

the speed of the decoder, however, at rates considered here (16 kbps) this is

not a factor. The use of soft decisions makes much fuller use of the available

information transmitted through the channel and thus lowers the Eb/NO required

for a given error rate; compare, for example, the constraint length 47 hard

decision and 48 soft decision curves in Figure 3.41.

3.2.3.3.2.3 System Interface Considerations

As discussed in Section 3.2.3.2.2.3 the decoder must be synchronized.

In the case of the MLD only branch synch was required since the .decoder does

not care where it is in the tree, but rather only in the relative positional

location within any given branch. This is not true with a sequential decoder

and is a major implementation problem.

The sequential decoder must know where it is in the tree at all

times. Suppose for example that a loss of lock occurred in the tracking

loop causing the decoder to overflow. Since the decoder was backing up at

the time and more data came in than it could handle, it has lost track of.
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where it was in the tree. Some way must be found to start things going

again. A simple method is to reset the whole system (encoder and all) and

start over. This, however, would require a command to the spacecraft and

timing problems; also it is slow with a lot of data held up or lost.

A more practical way is to periodically send a known bit or a

sequence of bits which can be used as a guide by the decoder in synchronizing,

restarting, and as an overall check of the system sync. Sandwiching these

bits into the data stream decreases the energy per data bit, however, with

some loss in coding gain. A tradeoff is involved to optimize sync capability

and coding gain.

Other schemes for restarting and synching have been proposed. All

of them somehow produce data at the-decoder input which has a high probability

of being correct and has a known position within the code tree.

Another interface consideration is the transparency versus non-

transparency of the code. If the code is not transparent then differential

coding could be inserted after the convolutional encoder and prior to the

decoder to correct the-situation. In doing this, however, an error in one

received bit out of the differential decoder causes the adjacent bit to be

in error. The implication is that the error rate into the decoder is doubled

and also that the errors are correlated. This degrades the system significantly.

Another way is to use a transparent code so that the decoder is

oblivious to phase flips; differential encoding/decoding can be done prior

to/after the CE/SD system.
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Still another method is to use the restart bits discussed above

to accomplish the phase ambiguity. All three of these schemes are shown in

Figure 3.43. Since the code chosen for the missions by NASA is not trans-

parent the "decoder resolves phase ambiguity" scheme will have to be used.

COMPLEMENT DATA

ENCODER H
DATA IN ENCODED PSK A PSK AMBIGUOUS DECODED

(NON-TRANSPARENT DATA DECODERMODEM N
CODE)N MODEM .ECEIVEDTA DATA

CODE) DATA-L

(a)

SRENTDIFFERENTIAL ENCODED PSK K AMBIGUOUS COD AMBIGUOUS DIFFERENTIAL DECODED
DATA MODEM RECEIVED MD DECODED DECODING DATA

CODE)DATA DATA

C
DATA IN ENCODER ECOED DIFFERENL PSK PSK MBIGOS I ERNTAL RECEIVED ^CODEn

DATA CCDiNG MODEM MODEM RECEED DECODING DTA DECODER DT

Cc)

FIGURE 3.43 PHASE AMBIGUITY RESOLVING METHODS

(a) Decoder resolves phase ambiguity. Cb) Differential coding
external to transparent error-control coding. (.c) Differential
coding internal to error-control coding Cundesirablel.

3.2.3.3.2.4 Design of a Sequential Decoder for a Constraint Length 24 Code

The following section describes the design of a sequential decoder

to be used with the encoder of Figure 3.42. The parameters for the decoder

are given in Table 3.19.

A block diagram of the sequential decoder is shown in Figure

3.44. Note the similarity to the MLD; this is to be expected since the

differences are threshold rather than path comparisons and back up Cinput

buffering) versus no back up capability.
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Code Rate: 1/2 (Nonsystematic)

Constraint Length: K=24 bits

Decoder Input Quantization: 3 bits (8 uniformly spaced levels)

Path Delay: 8 constaint lengths

Path Selection: Best Path not violating threshold

TABLE 3.19 PARAMETERS FOR DECODER DESIGN

The operation of the decoder is as follows. The received data

is quantized into eight levels as in the MLD and stored in an input buffer

(this is the one which can overflow) for back up search. The proper received

data is sent to the transition generator along with information necessary to

calculate the transition metrics; this depends on the node under consideration.

The past node metric (accumulated) is added to the transition metrics giving

two new accumulated metrics which are then compared for the best path of the

two (highest metric). This best metric is tested for threshold violation;

if okay the comparator notifies the algorithm logic which initiates a tightening

procedure or other path as dictated by the flow diagram. It also outputs a

tentative data bit selection to the path multiplexer which multiplexes it with

the accumulated data path up to that point. The result is stored. If the

threshold is violated the logic is also notified and the lower level of the

flow diagram is implemented including, if necessary, a back up. In the case

of a back up, the algorithm erases the corresponding node from path storage

and metric storage; it then selects the appropriate input bits for calculation

of the next best path to a node or if none exists it backs up again. If that

fails it finally reduces the threshold by resetting the threshold generator

and proceeds forward.

Since the same transition metric is used in sequential decoding

as was in the MLD, except for a bias term, its calculation is the same as in
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the MLD with the bias term subtracted from it, i.e.,

L00 = 91C + a2C2 - 800 (3.35)

L11 = aC1 + a2C2 - B11 (3.36)

L10 X 1 + a2C2 - 810 (3.37)

L01 = 01 1 1 2 B01(3.38)

The modification to Figure 3.37 is the addition of the bias term, Buj, to

the adder (in binary, of course).

The metric multiplex, metric storage, metric magnitude detector,

synchronization and timing, path multiplex, path storage, and metric comparator

remain essentially the same as in the MLD design with the notable exceptions

of erase capability in the storage units in the case of a back up and restart

capability in synchronization.

The threshold generator is a dual function full adder (threshold

loosening) and subtracter (threshold tightening) with the algorithm logic

controlling the add/subtract functions.

The input buffer is a 2048 bit serial in/parallel out shift

register with its input receiving the three bit quantized bits from the

channel modem and its outputs connected to the input buffer gates. These

gates, which are controlled by the algorithm logic allow the selection of

any set of received data as required for metric calculation.

Finally, the algorithm logic is essentially a minicomputer, which

reacts per the Fano flow diagram to "threshold satisfy/violate" inputs and

information so as to generate the algorithm.
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Note that no data bit selector or most likely path detector

blocks exists in the sequential decoder. This is because the data bit

selection is a natural result of a particular path having survived the

threshold criterion as opposed to any direct comparison of path metrics in

the MLD.

Phase reversal detection and other timing/sync functions are

provided by the synchronization and timing unit. Basically the metric is

monitored as in the MLD, however, added circuitry. is needed to obtain restart

in the case of buffer overflow and to routinely check on the periodic reference

bits sent by the encoder, e.g., frame sync words.

3.2.3.3.3 Sequential Decoder Cost

The cost of a sequential decoder operating at the low bit rates

of interest here should be higher than the Viterbi decoder because the pre-

viously decribed Viterbi decoder used serial operations which essentia!!y

makes it a sequential machine, however, the sequential decoding algorithm

is by its very nature more complex, hence more logic is needed. The machine

described below is one presently available and was chosen because of this.

If one had to be developed the development costs would have to be added onto

it. Also the decoder is overdesigned for the application here since it operates

at much higher rates than necessary and uses hard decisions, however it shows

what can be done.

o Manufacturer: Linkabit Corporation

o Model: LS4157
o Coding Gain: approximately 6 dB at 10 5 bit error probability
o IC Complement: approximately 600 units, MECL III

o Data Rate: up to 40 MBPS

at data rates well below 40 MBPS

3-99



o Code Rate: 1/2, systematic

o Constraint Length: K=41
o Decision Scheme: hard, Q=2

o Cost: approximately $35000 each

3.2.4 SEQUENTIAL VERSUS VITERBI DECODER TRADEOFF FACTORS

The primary vehicle used in this section for performing the

tradeoff between the sequential and maximum likelihood decoders is a paper

b7 Huth ( 10 ). In the paper Huth has used the storage and computation require-

ments of the two algorithms together with their performance on the AWGN

channel to analyze them. He plots complexity bits, which are defined as a

bit of storage or latch, a bit in an addition or comparison, or a switch,

versus Eb/NO with constraint length, quantization levels, and bit rate as

parameters.

Along with the above criterion other factors will be brought

into play which are pertinent to the IMEMD/H missions. Consider Figure

(10)
3.45 In order to apply the curve to an output probability of error of

10-5 rather than the 10-4 shown the coding gain variation could be taken

into account, but since K=7 has already been determined for the Viterbi

decoder, this is unnecessary (it is the constraint length that fixes the

complexity). In the case of sequential decoding the curve is vertical and

independent of constraint length hence for a given bit rate the complexity

at 10- 5 will be the same as that for 10- 4

With the above in mind it is seen that a K=7, Q=8 Viterbi decoder

requires 6000 complexity bits and the K=24, Q=8 sequential decoder requires

3500 complexity bits. Per a private conversation with Dr. Jerrold Heller

(25)
of Linkabit Corporation , it is felt that Huth's results are pessimistic
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FIGURE 3.45 Comparison of Complexity Versus Performance of
Viterbi Decoding and Sequential Decoding with
Code Rate 1/2 and Output Probability of Error
Per Bit of 10-

4

in that he uses the brute force approach. In fact Linkabit and General Atronics

Corporation have proposed Viterbi units with considerably less complexity. In

the conversation with Linkabit it was learned that they have available a K=7

decoder, Model LV7015 which provides the gain necessary and yet uses only

82 IC units. The unit costs $5000 in lots of one and $4500 in lots of five.

The reason for the discrepancy is that at the low rates considered

here (<100 kbps) a serial rather than parallel operation is possible (much

like the sequential decoder). This decreases the complexity.to at or below

the sequential machine. Another factor is that a more sophisticated algorithm

is used in the present decoder. It is thus felt that the complexity of the

see Section 3.2.3.2.3
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MLD and the sequential decoder is about the same, thus neither has the edge

here.

With the complexity issue resolved, other factors will be analyzed

which are essential to any decision between the two decoders. The first is-

very important and that is the burst error performance. While the space

channel is a random error medium, the signals could be subjected to burst

errors in several ways, e.g., due to tape speed fluctuation if recorded prior

to decoding, switching transients or transients, caused by lightening, entering

a transmission line while the code is being sent to, say, Goddard for central

decoding, or temporary loss of sync at the ground station due to power trans-

ients, signal fade, etc. The Viterbi decoder, since it does not require

restart after loss of sync will recover rapidly whereas the sequential decoder

needs a complete restart as discussed in its section. The Viterbi decoder

therefore has the edge here.

Another factor to be considered is the steepness of the coding

curves. Figure 3.45a contrasts typical Viterbi and sequential error

curves. The steepness of the sequential curve is an asset if very low error

-6
rates are desired (<10 -6 ) since less Eb/NO is needed to achieve them, however

it is a detriment if the system Eb/NO fluctuates very much about the knee of

the curve. For example consider Table 3.20 with values taken from Figure 3.45a.

Error Rate Eb/NO (Viterbi) Eb/NO (Sequential)

10-5  4.1 dB 4.2 dB

10-2  1.8 dB 3.5 dB

TABLE 3.20 ERROR RATE DEGRADATION
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FIGURE 3.45a CONVOLUTION CODING GAIN EXAMPLE
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As seen in the table, it only takes a 0.7 dB drop in Eb/N 0 to

degrade the error rate from 10- 5 to 10
- 2 with a sequential decoder where as

it takes 2.3 dB with the Viterbi. Thus if a fade occurs in the signal due

to transmitter power drop or an antenna off axis problem, the Viterbi decoder

is more graceful.

A third factor is the elimination of any off line decoding due

to sequential buffer overflow if a Viterbi decoder is used.

A fourth minor factor is that the constraint length of 7 encoder

is cheaper and easier to build than one of 24.

A fifth factor is that the Viterbi decoder is insensitive to

the AGC levels presented to it, especially in a soft decision decoder, e.g.,

a + 3 dB level change only affects the gain by about 0.1 dB. In the sequential

decoder the number of computations increases drastically as the levels deviate

from designed values.

The above items are considered to be the most important in the

tradeoff between the two decoders. In the next section these items will be

employed to recommend the decoder to be used on the IMEMD/H missions.
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3.3 TASK 3 DISCUSSION AND RESULTS

This section of the report studies five network configurations

(Figure 3.46) for delivering experimental data to a user via a convolutionally

encoded/Viterbi decoded telemetry system. Each configuration will be analyzed

individually on a block by block basis. In so doing the system as a whole

can be evaluated in terms of efficiency, cost, etc. and as such can be

compared against the others. The result of these comparisons will be the

optimum system for the IMEMD/H missions.

3.3.1 SOFTWARE VERSUS HARDWARE

As can be seen from Figure 3.46 the systems can be grouped into

two broad headings; either the decoding is done at the ground station or

it is done remotely. The bulk of this section will be devoted to the

problem of which is best and which system in the group is best. A major

concern before proceeding to this phase of the report, however, is what

is the implementation of the decoder to be, i.e., should it be hard wired

such as the one analyzed in task 2, or should the algorithm be performed

by a general purpose or possibly a special purpose digital.computer? To

answer this question, consider the following material on software decoding.

The first point to be determined in making a decision between

hardware versus software is the number and type of operations to be performed

in the algorithm. With this in mind the Viterbi algorithm was analyzed in

detail. Consider the flow diagram of Figure 3.47. Each block will be

explained in terms of its function in the algorithm, and the major operations

required to perform it will be investigated.
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Block 1 sets the metric storage (accumulated and transition)

to zero to start the algorithm at the tree origin. It also clears the

path registers and sets the path length counter to one. This is needed

since the number of allowable states increases up to 64=26 and stays there;

also the information bits start to be outputted from the decoder after 5

constraint lengths, i.e., 35 path bits.

Block 2 reads in the first six (6) received bits from the A/D

converter output of the bit synchronizer.

Block 3 calculates the transition metrics Ad. : j=1,2,3,4.
J

There are four of them because a 1/2 rate code allows the possibilities

00, 01, 10, 11 as transmitted (noisefree) code bits out of the spacecraft

encoder.

Block 4 calculates the accumulated metric for all paths leading

to a given state. There are 128=27 of these metrics. Note that the path

length counter content is an input to the block. This is needed because

at the start the number of accumulated metrics is less than 128. After

K-I branches have been received, where K is the constraint length, the

number of metrics is 128 and stays at this value for the rest of the algorithm.

Block 5 clamps the accumulated metric at some value if it tries

to grow too much. Since we are only interested in the lowest metric the

clamping will have negligible effect.

Block 6 resets all metrics by a fixed amount so that the relative

distances remain the same. This keeps the lowest metric from getting too

large which is not advantageous for storage purposes.
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Block 7 examines the number of resets that have occurred. Too

many resets means that the error rate is large which usually means that

branch sync has not been achieved.

Blocks 8 and 9 restart the algorithm and slip the received branches

by one half. Since there are only two bits (noisefree) per branch out of

the encoder, the decoder is either in sync or out. Slipping one half a

branch when out of sync puts the decoder in sync again.

Block 10 compares all the metrics leading to each state and

picks the path bit which corresponds to the best one. This bit is multi-

plexed to the previous path and the metric is stored.

Block 11 makes sure there is enough path delay to guarantee a

near optimum bit decision. It was shown in Task 2 that five (5) constraint

lengths was sufficient.

Block 12 adds one to the path length counter and the algorithm

is recycled.

Block 13 ejects the most delayed information bit estimate after

the path delay reaches thirty-five. The algorithm is then recycled.

With the above in mind it is relatively easy to derive a number

which represents the speed at which a computer must operate in order to

perform the algorithm. The reasoning is as follows. Aside from the

"housekeeping" operations that must be taken care of, there are a minimum

number of additions and comparisons to be done. Block 3 dictates 4 additions;

Block 4 dictates 128 additions; Block 10 dictates 64 comparisons. The
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comparison is equivalent to an addition, so there are at least 196 additions

to be performed. Rounding 196 to 200 gives an easier number to work with.

Now these additions must be done within a bit period hence

Table 3.21 shows the speed required of the computer versus the input information

bit rate (1/2 the coded rate).

speed (isec) 9.8 4.9 2.4 1.2 0.6 0.3

bit rate (KBPS) 0.5 1.0 2.0 4.1 8.2 16.4

TABLE 3.21 COMPUTER SPEEDS REOUIRED PER ADDITION

The major computers available at the ground stations in the

1975 to 1977 time frame of interest will be the ones used for Stadac I

and Stadac II. These machines require over 2 psecs per addition(
3 5 )(36 )

(Digital Equipment Corporation PDP/11 and Univac 642B computers). As can

be seen from the Table 3.21 only the IMEH mission at its lower rates could

possibly make use of the station computers.

The above rationale eliminates the station computers, however,

it could be possible for a more sophisticated machine at some remote

location to perform the algorithm. A quick look at reference 35, however,

readily shows that only very advanced machines such as the IBM 370 series

or a Univac 1110 could handle the 16.4 kbps rate from the IMEMD.

It should also be noted that the other parts of the algorithm

have not even been considered hence if the machine barely handles the number

of additions required, it will fail to do the job when the extra load is

placed on it by the rest of the algorithm.
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It may be of interest to note why the computer cannot achieve

the speed required. Computers are usually set up to read an instruction,

say an add of A and B, go to the memory to fetch A and B, load them into

registers, add them, and finally store the result. All of this consumes

time, and if each addition must be done sequentially, i.e., one after another,

then a large number of additions cannot be handled.

The conclusion is that a hard wired decoder is the most cost

effective implementation of the Viterbi algorithm.

As a side comment to the hardware decision above, it can be

noted that parallel operation is possible in hardware, whereas it is

difficult to justify in a general purpose computer. The sequential machine

must perform 200 additions one after another, but a hard wired machine can

be built to perform, say 10 additions in parallel, thereby decreasing the

speed necessary by a factor of 10. With the integrated circuit technology

available today it is possible to package a large number of full adders in

an extremely small space; also the advent of CMOS logic reduces the power

requirement to a reasonable level even though this is not a prime consideration

at a ground installation.

3.3.2 TELEMETRY/CODEC CONFIGURATION A

A straightforward mechanization of a system for receiving and

decoding convolutionally coded data is shown. This method was used on the

earlier Interplanetary Monitoring Platforms (IMP) and provided satisfactory

results. A description of the method is as follows. The output of the

receiver demodulator is recorded on a station tape recorder. Since the bit

rates were so low (~400 bps) the data could be readily recorded on the FM
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track of the tape recorder without encountering tape timing problems or

exceeding the response of the FM track.

The tapes were then mailed to Goddard Space Flight Center Informa-

tion Processing Division (IPD) where they were fed into a bit synchronizer

with soft decision capability and decoded. In the case of the IMP series

the decoding algorithm was the sequential version rather than the maximum

likelihood one considered in this report.

In the present study the bit rates are higher thus necessitating

a concern about the tape recorder. This subject will be taken up in Section

3.3.3 since the configuration A is not considered to be desirable due to the

tape mailing required. Many procedural problems arise when tape mailing is

involved. These problems are not reflected in a cost analysis, but are

important when considered in the context of network operation, e.g., tape

costs dictate that full tapes be mailed, however, full tapes inject confusion

into the data processing when stripping out each experimenter's data. Other

problems are tape costs, reuse of tapes, rework of tapes .after "?" number

of uses, mail delays, tape handling at the site, at GSFC, and in between.

These and other drawbacks have led to the decision that direct transmission

via NASCOM is highly desirable. Appendix H reproduces a Goddard study on

tape costs which was done after the present study and is therefore included

for "completeness."

It should be stated, however, that there are several positive

features of configuration A among which are:

o simplicity in concept

o central processing facility
o relatively reliable

o moderate cost

o minimum station equipment loading.
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Some unfavorable features other than those mentioned above are:

o human factor in handling and mailing

o indexing of projects requirement

o suseptability of tapes to damage.

The conclusion is that configuration A should not.be used unless

direct NASCOM transmission is not feasible.

3.3.3 TELEMETRY/CODEC CONFIGURATION B

The next simplest approach to the telemetry/codec problem is

to place a decoder at each support site as shown in Figure 3.46b. This gets

around the mail handling problem that was the chief reason for rejecting

configuration A discussed in the previous section. The rest of the system

is the same as that which would be employed in a real time transmission

uncoded telemetry system.

The advantages of configuration B are:

o All decoding is done at the site

o Lower data rates for transmission over NASCOM due to the
decoder'output being just the information rate originally
sent to the spacecraft encoder

o No tape recorder record/playback degradation prior to
decoding (bit synchronizer timing jitter, etc.)

o The placing of the bit synchronizer directly behind the
demodulator ensures that the matched filter internal to
it will indeed be "matched"; that is, up to the demodulator
output of a PCM/PM system the noise spectrum and statistics
are very predictable, whereas, tape recorder effects and
transmission anomalies over NASCOM can make the assumed
white gaussian noise an invalid model.

The disadvantage of configuration B is:

o Decoders needed at each support site.

Other than the problems of NASCOM transmission treated later.
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Let it be immediately stated, however, that once the decoders

are at the site, and if they are designed with some degree of flexibility,

then this disadvantage becomes an advantage. The reason is that future

missions can make use of them to save transmit power and/or increase their

data rates over and above an uncoded system. This can be done since

the K=7 Viterbi encoder is an almost trivial addition to a spacecraft in

terms of power and complexity.

It is the author's opinion that more and more coded systems will

be used in the future because of two reasons:

o Proven performance on prior spacecraft

o More familiarity with coded systems in general.

3.3.3.1 BIT SYNCHRONIZER CONSIDERATIONS

It is appropriate here to discuss some of the practical aspects

of implementing configuration B. Consider the bit synchronizer. Suppose

-5
that a bit error rate of 10-5 is desired. Theoretically an energy per bit

to single sided noise density ratio (Eb/No) of 9.6 dB is needed, however,

practical bit synchronizers of a state of the art design (so called third

generation) will perform within 1 dB of theoretical for input SNR's of

0 dB( 3 7 ) in the signaling bandwidth, i.e., the symbol rate seen by the bit

sync. Thus 10.6 dB is required in an uncoded system.

In a coded system, however, the symbol rate into the bit sync

is twice the information rate (1/2 rate code assumed). The bit sync must

integrate over a period equal to each symbol to estimate it, thus the

bandwidth must be larger in a coded system. This degrades the SNR into

the bit sync making it work harder, so to speak. Also since the decoder
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provides gain, say 5 dB for example purposes, the required Eb/No into the

bit sync must be 10.6 dB - 5 dB = 5.6 dB. Now the SNR is found by adding

10 log(Rb/W) , where Rb is the information rate (EbRb = S EbR s ) and W is

the bit sync bandwidth.

Say that the data is NRZ-L then it is common to pass the first

nulls of the power spectrum, thus W = Rs, where Rs is the symbol rate; but

Rs = 2 Rb resulting in an SNR at the bit sync of

SNR = 5.6 dB - 3 dB = 2.6 dB. (3.39)

The previous manipulation seems to cause great mystification

among engineers. It is the author's opinion that the confusion lies in

intermixing Eb/N 0 and SNR. Consider the following. Assume that all noise-

free waveforms are rectangular of height "A" (Figure 3.48).

x(t) y(t)

A A

t Encoder t
1/Rb 1/Rb

-A

FIGURE 3.48 ENCODED WAVEFORMS

Since energy is given by

E = S2 (t)dt, (3.40)

Rs is the symbol rate
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the energy per bit (x(t) over the time interval I/Rb ) is

1/Rb 2 2
Eb O A2dt = A2 /Rb (3.41)

Out of the encoder the energy per bit is

1/2Rb  1/RbEb R A2dt +1/ b (-A)2dt = A2 /Rb  (3.42)
Eb 1 /2Rb

The energy per bit has not changed'. Consider, however, the energy per

symbol out of the decoder

E 1 /2 R b  II/Rb 2 2
Es = A2dt = Rb (-A)2dt = /2Rb = Eb/ 2 . (3.43)

0 1/2 Rb

Consider the power, i.e., the energy per unit time.

Pb= EbRb = A (3.44)

Eb 2
PEb = ER (2R b ) = A (3.45)Ps ss 2 A

The power hasn't changed! Since the noise density is constant the signal

power to single sided noise density ratio is constant at

S/NO = Pb/NO = Ps/NO = A2 /NO (3.46)

The confusion occurs in the bandwidths throughout the system. Prior to the

encoder W=Rb (1st nulls again); after encoding W=2Rb, i.e., more bandwidth

is required due to coding, thus the SNR is

SNR = S/NOW = (S/NO)(1/W) (3.47)
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.and the SNR has decreased. This is, unfortunately, the quantity that is

.significant to the bit sync.

To finally put the point to rest consider the block diagram

of Figure 3.49.

Data Channel-2ta Channe I 2d PS IdB I&D 4dB P(E)=1,25 x 10- 2

kbps P=30dBm 170dBm/ W=4R b  1 Demod 1 T=J/Rb I Selector 111
Hz 4dB I W=2Rb 4dB 4dB

Loss=- 166 dB

(al Uncoded System

W ista Channent of the RF/IF bandwidth (i.ePSK
5 dB gain rce Encoder Xmt r N 3 dB gain due to demodultiplexing code

bikbp R i.e=2kbps P-dBm -170 / W=8R W=4R TRbon rate3-11Hz
Loss=-166dB

-5 w
Bit Decoder IdB

Selector Gain=5dB 4 A/D
9dB 4dB

W is the low pass equivalent of the RF/IF bandwidth (i.e., single sided)

S/N values are above the line; Eb/NO values are below the line

5 dB gain due to algorithm and 3 dB gain due to demultiplexing code
bits, i.e., bit rate is now the information rate

FIGURE 3.49 SYSTEM POWER/NOISE BUDGETS FOR CODED AND UNCODED SYSTEMS
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The conclusion to all of the above is that due to coding gain

by the decoder and the decreased integration time available to the bit

sync, the bit sync for a coded system must be better than an uncoded one

in terms of efficient operation.

A further requirement of a bit sync to be used with the proposed

soft decision system is that it have incorporated within it an analog to

digital (A/D) converter which quantizes the analog voltage out of the

matched filter into eight levels (3 bit word).

.It has been learned by the author that a bit sync with the A/D,

state of the art design (for the low SNR's expected), and appropriate clock

outputs has been procured by NASA/GSFC from "Moniter Systems" and these

units will be deployed throughout the STDN by the end of 1973. It is then

concluded that no problems should be encountered due to the bit sync block

in Figure 3.46.

3.3.3.2 TAPE RECORDER CONSIDERATIONS

The next topic to be discussed in connection with Figure 3.46b

is the tape recorder. As can be seen from Figure 3.46 all of the-configurations

have the option of recording the data at the ground station as a backup to

the direct data transmission via NASCOM. A tape recorder can also be used,

if such is desired, to slow down the data rate prior to NASCOM transmission,

thereby resulting in near real time data (the advantage here is that less

bandwidth is required to send the data).

Consider for the moment the station backup recorder. The output

of the bit sync was chosen as the point of recording rather than the MFR

output because the matched filter operation has been performed at this

stage of the system. The optimum estimate of the received signal
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is therefore available at its output. As mentioned in the

section on configuration A the closer that the system prior to the integrate

and dump filter is to the AWGN model the better the system will perform.

Again tape jitter, etc. would cause the channel to deviate from this AWGN

model. Another advantage of the choice of backup recorder position made

here is that digital recording can be made less sensitive to anomolies

than analog recording. A treatise of digital recording will now be presented

and is drawn mainly from references 38, 39, and 40.

There are two common methods used in recording digital data with

a magnetic tape recorder, viz., direct and FM. Direct recording is merely

an extension of the familiar audio (home entertainment) recorder. Without

delving too deeply into the physics and mathematics the following basics

together with the advantages and disadvantages of direct recording will be

discussed.

It is well known that an audio recorder cannot record and play-

back video, e.g., TV, signals. The reason is that the high end response is

not wide enough, i.e., high frequency signals are attenuated and therefore

lost. Since the electronics can be designed to handle the high frequencies

the basic limitation must be in the magnetic recording (tape to head to

tape) mechanism and indeed it is.

The voltage out of the playback head is a decreasing function

of the recording wavelength, i.e.,

V = g() (3.48)
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where

v = 1 (3.49)
f

v is the tape velocity past the head, and f is the frequency

recorded. These equations reflect the fact that signal is averaged across

the head gap and as such, when the frequency rises, it finally reaches the

point that it is averaged over a full cycle and is thus zero (relation (3.50)).

g(A) - 0 .as X - d (3.50)'

where d is the head gap (d/v is the time to traverse the head gap).

For a given frequency two things can be done to avoid the

averaging problem (see Figure 3.50).

1) decrease d thereby raising the value of f in (3.50) needed
to make the average zero.

2) increase v with the same result as in 1).

Obviously gap length can only be decreased so far due to head

wear, etc.; also the increased.tape speed requires a more *table tape drive

mechanism and allows less total data to be recorded on a given length of

tape. To quote an achievable high end response, the Ampex FR-2000 recorder

can handle frequencies up to 2 MHz in the direct mode.

The basic limitation at the low end of the record spectrum is

that the playback output is proportional to frequency, e.g., if 0 is the

recorded flux on the tape, the output for a sinusoid is

Kd0_ K d(sin 2rft)
V = dt dt = 2nfK cos(27ft) (3.51)
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FIGURE 3.50a GAP EFFECT AT LOW FREQUENCY

Gap

Tape Motion

,Average state of magnetization
from A to B is zero.

FIGURE 3.50b GAP EFFECT AT HIGH FREQUENCY
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.Figure 3.51 illustrates this relationship

V

Noise Level

FIGURE 3.51 RECORDER PLAYBACK OUTPUT VERSUS FREQUENCY OF INPUT

As can be seen from the figure the output at low frequencies

eventually drops down into the system noise and is thus unusable. The

conclusion is that the low end response does not go to zero and thus signals

with d-c averages cannot be faithfully reproduced. A typical low frequency

cutoff is 400 Hz.

Two other limitations of direct recording will now be discussed.

The first is data drop out. A simple explanation would be that the playback

recorded amplitude drops due to the tape pulling away from the gap. This

could be caused by "bumps" in the tape or vibration of the tape (Figure 3.52)

(the farther away the tape gets from the head the less the recorded or

played back signal).

(40)
The second limitation is due to timing errors. "A multichannel

instrumentation tape recorder exhibits some predictable time differences
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FIGURE 3.52 TAPE DROPOUT EXAMPLE

between its various data channels. These may or may not cause a problem

in a given application depending upon how accurately you need to correlate

time between events recorded on different channels. Interchannel timing

errors can be attributed to three main factors: 1) Static delays (skew)

caused by head manufacturing tolerances and any guiding misalignment of

the tape path relative to the heads; 2) Dynamic delays (also commonly

called skew) caused by the tape transport and the flexibility of the tape;

3) Static and dynamic delays caused by the electronics.

3.3.3.2.1 Static Time Errors

The major cause of static timing errors in a multichannel

recorder is the manufacturing tolerances of the heads. To illustrate,

take as an example the specifications of the Inter Range Instrumentation
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Group (IRIG) for head design which furnish the standards adhered to by

most tape recorder manufacturers (IRIG 106-66, Section 6).

Gap Scatter ...... . ....... . 100 microinches

Stack Spacing . ........... 1.500 + 0.001 inch

Head Tilt ...... ..... . ... +1 minute of arc

3.3.3.2.1.1 Gap Scatter

A multiple track instrumentation head stack has a number of

individual heads (typically 7 for a 1-inch staggered head stack), incor-

porated in the stack. It is mechanically impossible to exactly align

these gaps, so the term gap scatter refers to the actual tolerance of

alignment of each of these tracks in relation to a line through the mean

position of all gaps in the stack. The positional tolerance of these

head gaps within a given stack is a band 100 microinches in width. The

worst case condition of timing between two tracks would be when the gaps

in question on the record head stack were at one limit of the tolerance

while those at the reproduce stack were at the opposite end of the

tolerance band. This gives a worst case error of 200 microinches between

two tracks allowing 100 microinches in the record and 100 microinches in

the opposite direction on the reproduce head. As a final note it should be

stated that this error is somewhat random in occurence within a stack, and

heads with the widest spacing or error may occur adjacent to each other or

at the opposite ends of the stack.

3.3.3.2.1.2 Head Stack Spacing

In order to achieve the normal recording density of 14 tracks

for 1-inch tape (or 7 tracks for 1/2-inch tape), it is necessary to place
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half the heads, the odd numbered tracks, in one stack and the even numbered

tracks in a second stack. This allows sufficient shielding to be provided

between tracks in the head stack to minimize undersirable signal coupling

and crosstalk. The normal spacing difference between the odd and even

head stacks is 1.500 inches with a tolerance of +0.001 inch. This means

that under worst case conditions (record stacks spaced at one limit of

this tolerance and reproduce stacks at the other limit), adjacent odd and

even tape tracks could be displaced from each other by a possible 0.002

inch (2000 microinches).

3.3.3.2.1.3 Head Tilt

This measurement and specification refers to the difference

between the mean gap azimuth of a given head stack and a line perpendicular

to the edge of the tape. In practice this may be caused either by lack of

perpendicularity between the head stack and base plate, or the misalignment

of the tape path of the transport relative to the head. These effects are

difficult to separate and are usually tested as one measurement. No attempt

will be made here to separate them. The value permissible under IRIG

specifications is +1 minute of arc or a distance approximately 280 microinches

across a 1-inch tape width. Again this is an additive specification. Thus

in a worst case condition this figure could be doubled between record and

reproduce head stacks.

3.3.3.2.1.4 Time Dimensional Changes

Additional effects are caused by the inherent characteristics

of the magnetic tape which are not a function of head manufacturing

tolerances. The backing of tape is an elastic material. As such, the

distance between any two points on the tape depends on the tape tension
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to some extent. This shows up primarily as a change in the 1.5-inch gap-

to-gap dimension. Large temperature changes between the time of recording

and reproducing and uncontrolled long term.tape storage conditions can have

the same effect. This tape tension effect is not as significant as other

head spacing tolerances as its value is approximately 240 microinches

change across the 1.5-inch head spacing with a 1-ounce tension change

between the record and reproduce process on.1/2-inch tape (1 mil backing

thickness). A more significant change is observed if the temperature is

varied between the record and reproduce process. For a 50oF difference,

the 1.5-inch spacing will change 750 microinches.

An even more interesting change is observed if the relative

humidity of the air around the tape is varied over its full range between

record and reproduce. In this case, a relative.humidity change from zero

to 100% would vary the 1.5-inch head spacing by 1650 microinches, more

than all other effects put together. These phenomena, although seldom

considered, result from the physical properties of polyester base materials

of magnetic tape.

3.3.3.2.2 Dynamic Changes

Dynamic skew and dynamid registry changes between channels are

caused by runout of the tape transport, which is always present to some

degree, as well as tape guiding eccentricities, tape slitting errors, and

tape damage. While static skew can be allowed for and ignored to some

extent in the data, dynamic skew is a time variable phenomenon and thus

is much more difficult to eliminate. The only known method-for minimization

of this is control of the record and reproduce transport guiding. Typical

values of dynamic skew on a state of the art basis are 250 microinches from
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Srecord to reproduce across the full width of a 1-inch tape. Typical tape

transports of the instrumentation variety have a normal value of 500 microinches.

3.3.3.2.3 Electronic Delays

The delay variation between channels caused by the signal record

and reproduce electronics are normally inconsequential compared to the

mechanical delays shown above.

3.3.3.2.4 Measurement Conversion

In the previous discussion, dimensional changes caused by heads

and tape are expressed in two different units: linear measurement in micro-

inches and time measurement in microseconds. The conversion between units

can be easily made if you remember that a tape recorder running at 120

inches per second moves tape 120 microinches per microsecond. This would

mean a linear error of 240 microinches would occupy 2 microseconds of time

at 120 Ips, 4 microseconds at 60 ips, etc.

3.3.3.2.5 Tape Head Considerations

The minimization of stack to stack errors by the use of an

in-line head assembly is possible. However, manufacturing a single in-line

head stack with the same number of tracks as two staggered head stacks

creates two main problems. First, it requires that the amount of inter-

track shielding be reduced. This increases the crosstalk between data

channels. Second, the track width must be reduced which cuts the signal-

to-noise ratio, since it is impossible to make a full width track because

there is only a 20-mil space between them. Little or no room remains for

shielding, mounting, or wirewinding. An alternative to special in-line

heads is to put all data needing precise time correlation in the same

head stack."
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In summary, then, the advantages.of the direct record mode are:

o Wide response

o Simple electronics.

The disadvantages are:

o No d-c response

o Sensitivity to tape dropout

o Sensitivity to time base error.

The second most common recording mechanism is the FM record

mode. Basically, the signal frequency modulates a carrier which is then

recorded. On playback it is demodulated to retrieve the original signal.

Since the information is now carried in the frequency changes, amplitude

level changes, e.g., tape dropouts, are not as catastrophic; also a d-c

signal can now be recorded. Since the carrier is in the center of the

direct record band the phase shift characteristics are very good (in direct

record the band edges severely distort the signal phase).

The disadvantages of FM recording are the decreased bandwidth'

available (due to FM spectral spreading and double sidebands about the

carrier), more complex electronics to implement the FM process, and the

greater sensitivity to tape transport fluctuations. This last drawback

is due to the fact that these fluctuations appear on playback as a noisy

recorded signal.

With the above in mind the best mode of operation of the tape

recorder and its effect on the system in configuration B will now be deter-

mined. First and foremost the highest bit rate in the system is for the
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IMEMD mission at 32,768 bps; if the recorder can accommodate this rate

then the lower rates will take care of themselves.

Coming out of the bit synchronizer is the quantized data and

a clock at the code rate. These outputs could be time multiplexed and

recorded on one track, however, the frequencies involved would be high,

but more important than this the need to identify the start of each

quantized block (block sync) and the susceptabllity to time base errors

would be a problem. A much simpler approach would be to record the four

signals on four tracks. This alleviates the high rate problem and the

block sync problem, and if the proper tracks are chosen (all odd or all

even) then the time errors are minimized to acceptable levels. Also

multiplex/demultiplex equipment is not needed. The only disadvantage is

the requirement of four tracks, thereby, using a good deal of the tape

recording capacity.

It is felt that the four track method is the best approach.

As a side comment the time errors due to the tape transport and the tape

itself are minimized since the clock encounters these same errors.

The next decision is whether direct or FM recording should be

used. The basic NRZ-L format coming out of the bit sync requires a d-c

response from the recorder. This would seem to dictate the FM mode,

however, there are techniques to circumvent this problem and still use

the direct mode, thereby utilizing the wide bandwidth capability and the

relative insensitivity of the direct over the FM mode of operation. One

such technique is to convert the NRZ-L data to split phase data. This,

however, doubles the bandwidth requirement, and in so spreading the spectrum
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.it increases the phase distortion of the data. Figure 3.53 illustrates the

advantage of split phase coding whereby, the requirement of d-c response

is eliminated.

Another method of coding the data is to use a Miller code.

Figure 353 shows that the bandwidth required is decreased, and the d-c

response is minimized to about the same extent as the split phase code.

5.2 T-

4.8

4.4

4.0
I-
- 3.6 -

< MILLER CODE

3.2 -

I- 2.8

Z 2.4

0.4

W 1.6

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

FIGURE3.53 SPECTRAL DENSITY OF DATA CODES

Figure 3.54 shows the time waveforms for a sample of NRZ-L data.

In coding with a Miller code it is possible to pack 20K bits per inch of
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tape with less than a 10-6 error rate as compared to 12K bits per inch

at 10-6 for split phase codes and 10K bits per inch at 10-6 for NRZ codes.

-6
Note that a 10-6 error rate prior to the convolutional decoding will not

impact significantly on its performance since 10-6 is negligible relative

to the pre-decoded error rate (e.g., 10-3). It should be noted that Miller

coding also desensitizes the recorded data to dropouts due to the coupling

of bits in the code.

1 0 1 0 0 010 0 0 1 1 0 0 1

NRZ-L

NRZ-M

BI-o-M

MILLER

FIGURE 3.54 DATA FORMAT WAVEFORMS

The above discussion on direct recording with format coding

was really for completeness only since the 32,768 bps rate is well within

the capability of present day recorders (Table 3.22 lists the minimum FM

record responses of four Ampex tape recorders which will accommodate

32,768 bps), and so cost and complexity factors dictate its choice.

Higher tapes speeds increase the upper response limit.
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Model Tape Speed (.ips) Response

AR-700 60 dc to 40KHz

AR-1700 60 dc to 40 KHz

FR-1900 15 dc to 62.5 KHz

FR-2000 15 dc to 62.5 KHz

TABLE 3.22 EXAMPLE FM MODE TAPE RECORDER RESPONSES

Since the FM mode seems to be the best choice so far it is. in

order to investigate its distortion characteristics. The major culprit in

degrading the signal is the flutter in the recorder. Flutter frequency

modulates the already frequency modulated carrier, thus producing inter-

modulation distortion. The net effect is to raise the noise level of the

system. The amount that it raises the level is dependent upon the deviation

of the carrier by the desired signal. If the signal deviation is high and

the flutter deviation is low then the noise effect is small.

Appendix F presents the specifications of the four Ampex

recorders mentioned above. As can be seen the total harmonic distortion,

signal to noise ratio, and flutter are such that there would be negligible

degradation to a recorded bit stream of 33 kbps or lower, especially in

light of the fact that the clock will also be recorded along with the data.

The use of the tape recorder as a data rate reducer will be

treated in the next section on the data transmission system.

3.3.3.3 DATA TRANSMISSION SYSTEM CONSIDERATIONS (4 1 )

In configuration B the data entering the Data Transmission System

(DTS) will have been decoded; thus the highest rate which will be seen by

3-132



the system will be the 16,384 bps rate from the IMEMD mission. The highest

bit rate which can be transmitted over NASCOM narrow band lines (assuming

that a good error rate is desired) is 7.2 kbps; hence the narrow band lines

cannot be used unless some technique is employed to either lower the bit

rate to be sent or increasing the DTS capacity. For example, if the

16,384 bps rate is only needed for short periods of time, then it can be

recorded at say 120 ips and reproduced at 30ips. The data rate is now

4,096 bps which is well within the capacity of the narrow band lines.

Another possibility is to multiplex the lines, e.g., feed

every third bit to a narrow band line. This decreases the effective rate

to 5,461 bps which again is well within the capacity of the 7.2 kbps lines.

The problem with this approach, however, is that the bits must be reassembled

at the receive end which is no small task; also delay differences among the

lines present added problems. Another comment would be that it is an

inefficient use of the lines themselves, i.e., it ties up three data channels.

The last alternative for transmitting the high rate data is to

use wide band lines. Relative to the rate handling capacity of these lines

the 16,384 bps rate is very slow, thus no problem "capacity-wise" exists.

The above discussion was mainly for the 16,384 bps rate from the

NEMD. The next lowest rate is 8,192 bps and the preceeding comments still

apply. The lowest rate on IMEMD is 4,096. When this rate is sent then clearly

a single narrowband line is in order.

On the IMEH mission the highest rate is only 2,048 bps, thus it is

a simple matter to transmit it, or any of the lower rate options via a

single narrowband line.

Data compression was assumed undesirable due to the degradation of the
experimental results.
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With the above options set forth, the next order of business

is to study the effect of NASCOM on the overall quality of data. The first

thing to notice in connection with configuration B is that no burst error

patterns due to NASCOM will affect the decoder since it is located prior

to the DTS. This is an ideal configuration in this respect since the

convolutional codes recommended for the missions are designed for a random

error channel rather than a burst error channel. It will be recalled,

though, that a reason for deciding in favor of the Viterbi decoder over

the Sequential decoder was that it was less sensitive to burst errors and

recovered more rapidly when overwhelmed by a long burst pattern. Although

the preceeding is true, the fact still remains that burst errors are

undesirable and so placing the decoder ahead of the DTS is bptimum from

that standpoint.

Any errors due to NASCOM can only degrade the quality of the

data, hence considering channel errors and DTS errors as two setsan upper

bound to the overall (end to end) probability of error is:

PO ( E ) = P (C) + Pd( ), (3.52)

where PO(c) is the overall error rate, Pc(E) is that of the channel, and

Pd(c) is the DTS error rate. The Pd(E) of NASCOM is specified to be (as

a goal) as shown in Table 3.23.

Pd(c) < 10- 5  on single communications circuits

-5
Pd(c) < N x 10- on N tandem communications circuits

TABLE 3.23 NASCOM DATA QUALITY GOALS
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Using the values of Table 3.23 and the channel error rate of

-5
less than 10 with convolutional coding, the overall error rate can be

expected to be

PO (e) < (N+1) x 10-5  (3.53)

3.3.4 TELEMETRY/CODEC CONFIGURATION C

The bulk of the difference between configuration C and B treated

above is that the decoder Is now remote from the ground station. The obvious-

advantage of this approach is that less decoders are needed. The disadvantages

created, however, will be seen shortly to far outweigh the gain.

3.3.4.1 BIT SYNCHRONIZER CONSIDERATIONS

Due to the placement of the bit sync (same as the configuration B)

the pros and cons are the same as treated in Section 3.3.3.1.

3.3.4.2 TAPE RECORDER CONSIDERATIONS

The only significant change in the tape recorder requirement is

that the one used for data rate reduction must now handle the highest coded

rate of 32,768 bps. The discussion in connection with the station backup

recorder then applies. As a matter of fact the backup recorder and the rate

reduction recorder will most likely be the same machine. The only reason

for showing two machines in the Figure 3.46c is that the function played by

each of the blocks is different; one machine, of course, can perform both

functions.

3.3.4.3 DATA TRANSMISSION SYSTEM CONSIDERATIONS

Here is where the major departure from configuration B becomes

apparent. The outputs of the bit sync, whether rate reduced or not, are

multiplexed onto a single line for transmission over NASCOM. (It should be
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noted here that transmission of each output was rejected outright because

of its inefficient, and therefore costly, use of NASCOM lines and because

of the delay equalization problems involved.)

The only ramification of the parallel to serial (P/S) conversion

is that the increase data rate eliminates.the consideration of narrowband

lines, e.g., the 2048 bps IMEH rate becomes 12,288 bps with the coding and

P/S conversion. The higher IMEMD rates, of course, present an even worse

problem, e.g., 16,384 bps implies 98,304 bps. Assuming that wideband lines

are used these rates can be transmitted, but they greatly tax the trans-

mission capacity. The techniques discussed in Section 3.3.3.3 can be applied

to.this problem.

Having transmitted the multiplexed data, the next task is to

demultiplex it. The major problem here is to identify the 3 bit half-

branches so that the decoder can properly process them. It will be recalled

that the decoder searches for branch sync by slipping 3 bits at a time; it

was assumed that these 3 bits were correctly grouped by the bit sync.

There are several ways of approaching the above problem. The

easiest and most straightforward i.s to consider each (or an integral number)

half-branch group as frames of data and to tag them appropriately. This

framing is done in addition to the spacecraft frame sync. The obvious

disadvantage of this method is that special equipment is needed, i.e., the

P/S converter could be designed with the framing function built into it.

The serial to parallel (S/P) converter would, of course, need a frame sync

search function incorporated into it.
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Another approach would be to identify the sub-bits by their

distribution. Such a scheme was investigated in reference 42 and was found

to be inadequate except at high SNR's which are absent in coded systems.

A third method is to obtain the spacecraft frame sync. This

(42)
was also shown not to work at low SNR's

A fourth method is to have a devi.ce similar to the decoder

itself which moniters the metric of the decoder and slips by 1 bit instead

of 3 bits. Of course the decoder could be designed to do this, but again

cost is a factor.

The last method to be considered is to simply send the clock

over a separate line and use it to obtain half-branch sync. This ties up

a wide or narrowband line (depending upon the rate), however, it takes the

least complexity and development cost to implement.

In summary, then, while the central location of the decoder away

from the remote sites is desirable, it introduces many problems as a result

of the higher rates and the need for half-branch sync. It should also be

stressed that data rates are more likely to increase rather than decrease

in the future; thus the problems discussed above will be further aggravated

rather than relieved.

3.3.5 TELEMETRY/CODEC CONFIGURATION D

In this configuration the data is frequency multiplexed, sent over

several wideband lines, demultiplexed, and fed to the Viterbi decoder. As

noted in Section 3.3.4.3 this method taxes heavily the capacity of NASCOM,

however, it could be that due to the larger available bandwidth that suitable
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spectral packing (choice of subcarriers) could result in on.ly one wideband

channel being utilized at the lower rates of IMEMD or for the rates of the IMEH.

As can be seen from the figure no parallel to serial conversion

takes place, thus no half-bit sync is required at the receive end. There

is still the problem of delay differences among bit sync outputs, however,

if one wideband line is used then the problem is partially solved.

For the high bit rate on IMEMD this configuration necessitates

the employment of multiple wideband lines and thus is not considered to

be cost effective. The alternative of slowing down the rate via a tape

recorder at the station discussed in an earlier section could be used to

get around the excessive rates.

3.3.6 TELEMETRY/CODEC CONFIGURATION E

This is the last configuration to be taken under consideration

in this task report. It-is unique in that while it has the advantages of

placing the matched filter at the ground site and not requiring individual

site decoders, it does not simultaneously incur the increased bit rate

problems due to quantization which plagued configurations C and D. As

can be seen from Figure 3.46e, the output of the matched filter is not

quantized at the site, but rather it is sent via NASCOM in a pulse amplitude

modulated (PAM) form.

The bandwidth requirements for the PAM out of the matched filter

are the same as the noisefree PCM of the same rate (The power spectrum is

derived in Appendix G). This means that the highest bandwidth which must

be transmitted is 32,768 hertz. This would require a wideband line or

group from the station to Goddard. Another drawback is that the
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amplitude level variation over NASCOM is a function of many random parameters,

thus when the PAM was received at Goddard the amplitude would bear little or

no relationship to the output of the matched filter.

A way of avoiding the amplitude problem would be to FM or PM a

carrier or subcarrier with the PAM baseband, but this would require more

bandwidth and the additional cost of the modems.
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4.0 CONCLUSIONS AND RECOMMENDATIONS

In this part of the report the tradeoffs and conclusions which were

proposed in Section 3 will be reviewed. After a limited amount of discussion

a set of recommendations will be stated. It is hoped that these recommenda-

tions will result in guidelines for the design of mission hardware and support.

Also included in this section will be special topics which are

either specifically called for in the contract statement of work or are

worthy of interest in themselves.

4.1 TASK 1 CONCLUSIONS

The first point to be made is that an Apollo type of trans-

ponder should not be used. As was shown in the main body of the report,

the rising density severely limits the ability of the transponder to

provide a noisefree turnaround ranging signal. At this point in the IME

design a non rising density type of transponder is proposed. This is

a wise choice and should not be compromised.

The next point of interest was that due to the large field

of view of the command antennas on IME spacecraft, the effect of solar

noise was negligible relative to the large system temperature of the IME

receivers. This was seen to not be the case on the ground due to the

narrow field of view of the dishes and the low system noise temperature

on the ground.

Referring to Table 3.2 it will be recalled that the worst

case Heliocentric mission required an 85' dish. This was due mainly to

the null in the command antenna pattern. It was noted in connection with

this item that this case is unlikely to occur because of the stabilized

platform on which the antennas are mounted, that is, there will always be

at least one channel onboard IME-Heliocentric which will operate at or

4-1



near the peak of the pattern of the command antenna. This chart,

.however, shows that the mission can be supported even in a tumble

situation.

As a general comment it can be said that the uplink under

nominal operating conditions is in good shape "marginwise."

Turning now to the downlink, it-was seen that an 85' receiving

antenna used with a maser front end was necessary on all the cases. This

was because of the bit rates being considered sacred and thus only being

lowered, as in the Heliocentric worst case, when all other parameters had

been adjusted. More will be said about this later in connection with the

recommendations portion of the report.

Another major tradeoff which was made for the downlink was to

increase the minimum halo orbit radius from 40,000 km to 60,000 km. This

resulted in a 1.4 dB improvement in the receiver system temperature due

to the decrease in solar interference.

At this point it is appropriate to list the modulation indices

and factors for the various cases discussed in the report. This is done

in Table 4.1.

4.2 TASK 1 RECOMMENDATIONS

With the above tradeoffs and parameters in mind, this section

will propose support requirements for the IME missions.

First and foremost, it is recommended that the minimum coding

-5
gain that be employed be 5 dB at 10- 5 BEP. This is about the maximum

that can be expected for a reasonable hardware/software implementation.
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Case Range Index Telemetry Index Carrier Loss Range Loss Telemetry Loss

A 0.5 (0.4) -1.1-.(-0.7) -6.4 (-8.2)

•A 0.8 (1.4) -3.1 (-15.4) -2.9 (-0.1)

B 0.5 (0.4) -1.1 (-0.7) -6.4 (-8.2)

B 0.8 (1.4) -3.1 (-15.4) -2.9 (-0.1)

C 0.5 (0.4) -1.1 (-0.7) -6.4 (-8.2)

C 0.8 (1.4) -3.1 (-15.4) -2.9 (-0.1)

D 0.5 (0.4) 1.2 (2.2) -4.6 (-19.9) -9.9 (-27.3) -4.2 (-2.8)

E 0.4 (0.4) -0.7 (-0.7) -8.2 (-8.2)

E 1.2 (1.4) -8.8 (-15.4) -0.6 (-0.1)

F 0.4 (0.4) -0.7 (-0.7) -8.2 (-8.2)

F 1.2 (1.4) -8.8 (-15.4) -0.6 (-0.1)

The parenthetical values are for Mother-Daughter; others are for Heliocentric

TABLE 4.1 MODULATION INDEX/LOSS MATRIX
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With this gain, the 85' receiving antennas, and maser front end, the

Heliocentric mission is marginal for telemetry in Case C (0.6 dB),

acceptable in Case D (2.3 dB), and unacceptable in Case F (-4.3).

The main reason for the above margins is the solar noise

factor (-9.8 dB). If this were not present all the margins would be

acceptable. Per direction from Goddard the largest halo radius minimum

acceptable is 60,000 km. It is then recommended that it be used. Also

if any beam shaping can be done to minimize the solar noise further,

then it should be done.

When near the earth-sun line on Heliocentric the highest

bit rate which can be supported is 256 bps; on all other cases the

highest bit rates designed for can be used.

On the Heliocentric spacecraft the hemispheric antennas

cannot be used on the downlink due to insufficient carrier power among

other reasons.

4.2.1 Uplink Minimum Support Recommendations

o IME-Heliocentric: hemispheric spacecraft receive antenna,
,20 kw command transmitter, 85' ground
antenna, search for strongest channel
then range on that channel

o IME-Mother-Daughter: hemispheric spacecraft receive
antenna, 20 kw command transmitter,
30' ground antenna
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- 4.2.2 Downlink Minimum Support Recommendations

Range, Best/ Downlink Grd Ant. Front Rate Range Tim
IMP Tim Worst Case (feet) End Rate Index Index

Range/Tim Situation (bps)

H. R/T W D 85 Maser 256 0.5 1.2

H. R/T B D 85 Maser 2048 0.5 1.2

H. R W A 85 Maser 0.5

H. R B A 30' Hot P. 0.5

1I. T W B 85 Maser 256 0.8

H. T B B 85 Maser 2048 0.8

M.-D. R/T W D 85 Maser 16384 0.4 2.2

M.-D. R/T B D 30 Cold P.16384 0.4 2.2

M.-D. R W E 30 Hot P. 0.4

M.-D. R B E 30 Hot P. 0.4

M.-D. T W B 85 Maser 16384 1.4

M.-D. T B B 30 Hot P.16384 1.4

4.3 TASK 2 CONCLUSIONS

The main conclusions to be reached as a result of this task

are that either a Maximum Likelihood Decoder (MLD) or a Sequential Decoder

(SD) will provide the coding gain required by the IMEMD/H missions when

used with their corresponding convolutional encoder. It was found that the

MLD had several"saving graces." Among these were no restart requirements

and better burst error recovery than the SD.

Block diagrams for both of the decoders were presented and it was

seen that "blockwise" they were about equal, The main differences were that

the MLD required more storage than the SD. The SD was seen to require a
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large input buffer to store the received coded bits. This was because the

SD had to back up in time (code tree search) whenever it reached a point

where the current data path violated a running threshold,

A minor conclusion was that Feedback Decoding CFD) of the con-

volutional code would not provide the coding gain necessary to do the Job.

This was because it had no power to back track, as in the SD, and as such

had to rely on looking at many tree branches to get its error correction gain,

however as the number of branches increased so did the complexity. Since the

increase was exponential things soon got out of hand, hardwarewise.

Another conclusion which can be reached from the material in

Section 3 is that the difference in complexity in a software implementation

of the two decoders would be negligible. This can be reasoned as follows.

It will be recalled that the definition of complexity bits was on a functional

rather than hardware basis, thus any implementation would result in the same

relative complexity between the two decoders.

The bit sync interface with the demQdulatQr in use at the

ground station is straightforward. The output of the decoder if used

at the ground station on the other hand, can interface with either a tape

recorder or a data transmission system. In either case the output data from
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the decoder would be treated in the same way as any other telemetry data

which was not coded. No special equipment is needed.

4.4 TASK 2 RECOMMENDATIONS

It is recommended that a K=7 encoder with a Maximum Likelihood

Decoder be used for the IMEMD/H missions. This choice was primarily based

on the marginal signal to noise ratios available on the Heliocentric mission

when it is near the sun. The presence of the sun with the periods of possibility

-of frequent solar activity giving rise to short periods of higher levels of

noise makes it imperative that the decoder be graceful when it degrades. Also

the possibility of decoding at Goddard would introduce transmission line burst

errors thus further supporting the recommendafion. It is not to be construed

from the above that the burst error mode is dominant, on the contrary, the

AWGN applies most of the time, however, the high likelihood of the burst errors

must be accounted for.

The complexity factor was not deemed to be sufficient to rule out

the MLD since the state of the art in integrated circuit technology is such that

storage requirements can be easily met and this was the main reason for the

complexity of the MLD.

The other features of the MLD in Section 3.2.4 were also weighed

and found to be desireable for the present application. It is felt that a

close study of the material presented in Section 3 will support the conclusion

reached in this section.

4-7



4.5 TASK 3 CONCLUSIONS

The five configurations of Figure 3.46 were discussed in detail

on a block by block (or subsystem such as NASCOM) basis in Section 3. In

this part of the report the salient features of each configuration will be

reviewed. After this is done the appropriate conclusions will be drawn with

the constraints of the IMEMD/H missions takn into account.

The first configuration was that of Figure 3.46a. It was seen

to be the least complex, "hardware-wise," of the fi-ve. It did however

require magnetic tape mailing. The following table lists its advantages

and disadvantages.

Advantages Disadvantages

o Central decoding !ocation o Requires tape mailing
o Least number of decoders o Matched filter removed from

required channel by record/playback
characteristics of recorder

o Simplicity of design 0 Delay in the data to the
experimenter by mail delay time

Least ground site impact

TABLE 4.2 CONFIGURATION A TRADEOFFS

Since the trend of future network support is for a minimum

of tape handling and as near to real time data transmission as possible,

of the five configurations of Figure 3.46
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.this configuration cannot be given the number one rating in terms of system

optimal ity.

The next system is configuration B. This is the one that is

best in the author's opinion. The chief reason for this selection is that

it fulfills the real time data transmission criterion and also is cost

effective (see Section 4.6). Table 4.3 presents its advantages and dis-

advantages.

Advantages Disadvantages

o Simple to implement 0 Requires several decoders
(one for each support station)

o Moderate station impact 0 More station impact and complexity
than configuration A

o Matched filter located at
the site

o Uncoded data rates for DTS
transmission

o No post DTS resync problems
o Moderate cost impact

o Decoders can be used for
other missions

TABLE 4.3 CONFIGURATION B TRADEOFFS

As mentioned in Section 3, if the decoders are at the site

as part of the station inventory then they are an asset. This is because

of the power savings on future spacecraft and/or the increased data rate

and quality.

Configuration C was seen to be merely the result of locating

the decoder of configuration B at a remote site. The major stumbling

block was the requirement of obtaining half-branch synchronization due to
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.the loss of it in the parallel to serial conversion at the site. Great pains

must be taken to reacquire this sync and therefore this configuration is not

highly desirable. Table 4.4 lists its pros and cons.

Advantages Disadvantages

o Central decoding location o Half-branch resync required
o Less decoders required o Excessive complexity and station

impact
o Matched filter located at o High data rates to be transmitted

the site via NASCOM (-100 kbps)

TABLE 4.4 CONFIGURATION C TRADEOFFS

Configurations D and E will only have their tradeoff factors

listed since as it will be shown in Section 4.6 the cost factors involved

completely eliminate these options from consideration in a practical support

system.

Advantages Disadvantages

o No post DTS resync required o Requires many wide band lines
or a super group channel

o Match filter located at o Requires FDM Mux/Demux
the site

o Moderate station impact 0 High data rates involved
o Moderate theoretical complexity

TABLE 4.5 CONFIGURATION D TRADEOFFS

Advantages Disadvanfaqes

o No post DTS resync required o Requires precise DTS analog
level transmission

o Matched filter located at o Requires PAM/FM transmitter/receiver
the site

o Moderate data rates involved o -Requires additional bit sync
o Moderate theoretical complexity

TABLE 4.6 CONFIGURATION E TRADEOFFS

4-10



*4.6 TASK 3 RECOMMENDATIONS

The pros and cons of Section 4.5 together with cost factors will

be used to arrive at an optimum support system for the IMEMD/H missions.

Cost factors which were instrumental in eliminating various configurations

will also be listed.

It should be mentioned here that the costs presented in this

section of the report are estimates only since a prediction of future costs

in this day and age is somewhat of a mystic art. However there will be a

clear dividing line between systems with respect to the cost aspect of its

implementation as will be seen shortly, and so the "order of magnitude"

nature of the numbers presented will not compromise their effectiveness

in grading the systems.

In order to look at cost factors and to be able to form some

reasonable support conclusions, three stations were chosen as support sites.

These are:

o Madrid (MAD)

o Orroral (ORR)

o Goldstone (GDS).

These three were chosen for their geographic location since

worldwide coverage will be required for the missions and since mail rates,

data transmission rates, etc. will be representative of those which would

be encountered in that area of the world.

Per reference 44, it is believed that by the time of mission

launch (late 1977) that there will be 28.5 kbps data lines to these sites
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and possibly others as well. These data lines are being implemented for

the Mariner/Mercury mission; they will be one part of a group channel

leased via a satellite link.

The point of the above is that the highest bit rate of 16,384 bps

can be transmitted over this link, however, this requires decoding at the

sites.

To get a better feel for the numbers involved, the following

Table 4.7 lists the present costs of Voice Band lines and a Group channel

for each of the three stations under consideration. It also lists an

estimate of a group channel cost if the Comsat "Spade" system under

investigation by Goddard is employed by NASCOM. (An explanation of Spade

is found in Appendix I.)

VOICE BAND GROUP(50 kbps Capacity)

Madrid (1973) $13,000/mo $117,000/mo

(1977 estimate) .: $ 39,000/mo

Orroral (1973) : $26,000/mo $200,000/mo

(1977 estimate) : $ 78,000/mo

Goldstone (1973) $ 1,500/mo $ 15,000/mo

(1977 estimate): $ 15,000/mo

TABLE 4.7 DTS COSTS

The cost for a supergroup can be estimated by multiplying by

five (5) since five groups are in a supergroup.

It can be easily deduced that wideband lines are to be avoided

if at all possible.

The lower rates only apply to overseas locations.
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Consider the following hypothesis and its associated costs.

Assume that continuous coverage is required and that each station provides

one third of it (this assumes a circular orbit and symmetrically placed

sites, however it provides a case for study). This means that 8 hours

per day is required for the transmission lines. For a three (3) year

support schedule and assuming that the lines are time shared with other

projects so that the costs are one third of the total Table 4.8 lists the

costs of the configurations. employing NASCOM. Also assumed is the lowest

rate, i.e., the Spade system; thus the estimates can be considered to be

conservative (e.g., there may not be time sharing among projects and the

Spade system may not be employed).

As can be seen the decoder costs are small relative to

the wide band alternatives; also they are a nonrecurring cost whereas the

line costs grow with time.

In Table 4.8 only configuration C was compared against con-

figuration B. This is because the others, viz., D and E, require even

wider bandwidths and thus even higher costs. Since it is clear that

configuration C is not cost effective relative to B, the others would

not be either.
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Configuration Mother or Daughter Hel iocentric

$ 13,500 Decoders $ 13,500 0 Decoders

$234,000 (1/2 Group) MAD $156,000 (Voice Band) MAD

B $468,000 (1/2 Group) ORR $312,000 (Voice Band) ORR

$ 90,000 (1/2 Group) GDS $ 18,000 (Voice Band) GDS

$805,500 TOTAL (  $499,500 TOTAL®

$ 4,500 Decoder $ 4,500®Decoder

$ 936,000 (2 Groups) MAD $234,000 (1/2 Group) MAD

C $1,872,000 (2 Groups) ORR $468,000 (1/2 Group) ORR

$ 360,000 (2 Groups) GDS $ 90,000 (1/2 Group) GDS

$3,172,500 TOTAL® $796,500 TOTAL

SIt is assumed that two spacecraft can be supported per site. The two

can be the Mother and Daughter, Mother and Heliocentric, or Daughter and

Heliocentric; hence two decoders per station are needed if local decoding

Is used or one decoder per spacecraft if remote decoding is used.

Example calculation: $39,000/mo. for full group times 1/2 group needed

for 16 kbps (it is assumed that the other half can be utilized by other

NASA projects on a cost share basis) times 36 mo. project support times

1/3 support per site (it is assumed that other projects will use the

site and NASCOM for the other 16 hours/day thus sharing costs).

Total 3 year support cost for that spacecraft.

TABLE 4.8 COMPARATIVE MISSION SUPPORT COSTS

4-14



4.7 THE OPTIMUM SYSTEM FOR IMEMD/H M.ISSIONS

Using all of the preceeding tasks and text as support material

it is concluded and recommended that configuration B of Figure 3.46 be chosen

as the telemetry system for both missions. It is optimum in the following

sense:

o It is cost effective.

o It provides .quality data to the user.

o It is practical to implement.

o It does not unduly load the network.
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*4.8 SPECIAL CONSIDERATIONS

In the statement of work of the contract the customer has

requested "definitive answers" to the following questions.

1) What can be done with the present on-site equipment for

the tasks I, II, and III of the contract?

2) What would be the nature of a cost limited modification

to accomplish some of the coding advantages?

3) What would be an optimum system with state of art approaches

including costs and advantages?

The purpose of this section is to fulfi ll the request.

Concerning question 1), the optimum system required no impact

on the station inventory with the exception of the purchase of the decoder

since the soft decision bit synchronizers will have been installed prior

to the support time frame. Since the decoder was required to be hardwired

(Section 3.3.1) there is nothing to be done with the present on-site equipment.

Question 2) addresses itself to a "cost limited modification."

Since the decoders cost between $4,500 and $5,000 each (depending on order

lots) the only less costly option in terms.of initial cash outlay would be

to use configuration A, that is, use the present system of mailing tapes.

The pros and cons of this option were treated in detail in Sections 3 and 4.

Finally the optimum system, per question 3) was arrived at as an

end result of this study, i.e., configuration B. The only improvement which

could be made would be to purchase a decoder using state of the art circuitry,

however, this would be costly and would not result in significantly better

coding performance (the "state of the art" would be mainly to increase

operating speed and lower power requirements, neither of which is needed).
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6.0 GLOSSARY

o IMP - Interplanetary Monitoring Platform

o Dish - Parabolic Antenna

o PN - Pseudonoise

o MUX - Multiplexer

o S/C - Spacecraft

o PM - Phase modulation

o Xmtr - Transmitter

o Ant - Antenna

o Atm - Atmosphere

o Xpdr - Transponder

o Tim - Telemetry

o Demod - Demodulator

o Grd - Ground

o Rec - Receiver

o Sys - System

o Convol - Convolutional

o PSK - Phase shift keyed

o Mod - Modulator

o BPF - Bandpass Filter

o MHz - Megahertz (106 Hertz)

o GHz - Gigahertz (109 Hertz)

o Temp - Temperature

o Car - Carrier

o ACoding - Phase Transistion Coding

o DTS - Data Transmission System-
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o Nascom - NASA Communications Network

o Rcdr - Recorder (Tape, Pen, etc.)

o S/P - Split Phase (Manchester)

o Polariz - Polarization (E-field orientation)

o VSWR - Voltage Standing Wave Ratio

o USB - Unified S-band

o STADAN - Space Tracking and Data Acquisition Network

o AGC - Automatic Gain Control

o S - Signal Power

o BPS - Bits Per Second

SE b - Energy Per Bit

oN - Single Sided Noise Spectral Density (White Noise)

o BEP - Bit Error Probability

o ESRO - European Space Research Organization

o NEMD/NH - NASA/ESRO - Mother Daughter/NASA Heliocentric

o Eb/NO - Energy per bit/Single sided noise density

o GSFC - Goddard Space Flight Center

o AWGN - Additive White Gaussian Noise

SP() - Probability of error

o encoder - A device for applying a coding scheme to
information bits

o decoder - A device for recovering information bits from
coded bits

o Es/NO - Energy per signal/Single sided noise density

o mod-2 addition - 0 + 0 = 1 + 1 = 0, 0 + 1 = 1 + 0 = I

o R0 - Channel exponential bound parameter

o MLD - Maximum Likelihood Decoder
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o SD - Sequential Decoder

o d(x,y) - Absolute distance between x and y.

o Ad(x,y) - Transition distance between x and y

o CPSK - Coherent Phase Shift Keying

o DCPSK - Differentially Coherent Phase Shift Keying

o A-decoding - Coherent decoding of a differentially encoded

bit stream

o Code Polynomial - Register tap configuration for a given code

o Biphase (two phase) - Phase modulation employing one constant

phase shift for a binary 0 and another
for a binary 1.

o TTL - Transistor Transistor Logic

o IC - Integrated Circuits

o CE/SD - Convolutional. Encoder/Sequential Decoder combination

o R - Channel computational cutoff rate
comp

o Modem - Modulator/Demodulation combination

o MECL III - Motorola high speed logic

o AGC - Automatic gain control

o sgn(x) - Signum function: sgn(xl) = 1 = -sgn(-Ixl); sgn(O) =0

o STDN - Space Tracking and Data Network

o SNR (S/N) - Signal Power to Noise Power Ratio

o FDM - Frequency Division Multiplex

o PAM/FM - Pulse Am plitude Modulation/Frequency Modulation
(Baseband Modulation Format/Carrier Modulation Format)

o PCM - Pulse Code Modulation

o FM - Frequency Modulation

o Codec - Encoder/Decoder system

o P/S - Parallel to Serial

o S/P - Serial to Parallel (in cQnnection with NASCOM discussion)
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o ips - inches per second

o NRZ-L - Non return to zero-level

o NRZ-M - Non return to zero-mark

o B I-L - Binary Phase-level

o B 0-M - Binary Phase-mark

o Sync - Synchronization

o A/D - Analog to digital

o MFR - Multifunctional Receiver

o Rb - Information bit rate

o Rs - Signaling rate

o W - bandwidth

o I&D - Integrate and Dump detector

o CMOS - Complementary Metal Oxide Semiconductor

o Stadac - Station Data Acquisition and Control

o R - the practical channel capacity, R = b/n, where
b is the number of information bits encoded and
n is the number of resulting code bits.
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APPENDIX A

SYSTEM PARAMETERS

A listing of the various parameters used throughout the test

will be given here. Several of these parameters appear in the text, but

it is felt that a concise listing is helpful for reference purposes.

o Ground Transmitter Power: 20 kw maximum at the USB sites

o 85 foot Antenna Gain: 52.5 dB at 2.1-2.3 GHz

o 30 foot Antenna Gain: 43 dB at 2.1-2.3 GHz

o IMP Antenna Gain: 9 dB maximum (medium gain); 2 dB maximum,
-3 dB minimum (omnidirectional)

o IMP-Heliocentric Distance from Earth: 1.5 x 106 km maximum

o IMP-Mother-Daughter Distance from Earth: 1.5 x 105 km maximum

o IMP Transponder Noise Temperature: 15000 K (at threshold)

o Ground Receiver Noise Temperature: Maser 700 K, Cooled Parametric
Amplifier 960 K, Uncooled Parametric Amplifier 170 0 K

o Uplink Modulation Indices: 0.8 radians (ranging), 0.9 radians.
(command)

o Transponder IF Ranging Bandwidth: 2 MHz

o IMP-Heliocentric Transmitter Power: 2.5 w

o IMP-Mother-Daughter Transmitter Power: 1.0 w

o Ground Receiver Carrier Threshold: 12 dB in 30 Hz bandwidth (loop)

o Ground Receiver Ranging Threshold: 23 dB-Hz -

o Ground Receiver Telemetry Treshold: 11.6 dB (E /N at 10-5 BEP)

o Ranging Chip Rate: 991.6 kcps (NRZ-L)

o Uplink Frequency Range: 2090-2120 MHz

o Downlink Frequency Range: 2200-2300 MHz

o IMP-Heliocentric Bit Rate: 2048 bps maximum, 256 bps minimum

o IMP-Mother-Daughter Bit Rate: 2048 bps minimum; 16,384 bps maximum

o Telemetry Subcarrier Frequency: 1.024 MHz
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APPENDIX B

SPECTRAL POWER DISTRIBUTION

In this appendix, the theory used in the text will be developed.

The reader is referred to references 12 and 19 for details. Consider the

following waveform

S1(t) AiP sin[wct + b(t)], (B.1)

where P is the total power, we is the carrier frequency in radians per

second, T is the modulation index, and b(t) is a random bit stream taking

on the values ±+1. This waveform is a mathematical representation of a

carrier phase modulated by a telemetry bit stream as would be the case if

no ranging were present on the downlink of the IMP spacecrafts, i.e., the

prime carrier option.

The power spectrum of S (t) contains a discrete component, i.e.,

a concentration of power at a specific frequency (the carrier frequency here)

with the rest of the spectrum spread out over a band of frequencies on both

sides of the carrier. Any receiver using coherent demodulation will have to

create a local version of the carrier for mixing purposes. This is done by

placing a very narrowband bandpass filter about the discrete component in

the above spectrum, thereby passing only it (the sidebands are rejected).

Actually a tracking filter is used which keeps the center of the filter on

the discrete component.

Having locked onto the carrier, so to speak, the detection of

the information carrying sidebands can be accomplished by multiplying

S1(t) by the created local reference and low pass filtering to remove

double frequency components.
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In the above two factors determine how well the processing can

be done, the amount of discrete component power, P , and the sideband power,

Ptlm. The higher Pc is,the more stable the carrier lock is,and the better

the reference carrier, whereas the higher Ptlm is,the lower is the error in

making information bit decisions in detection of the telemetry. Per

reference 19 or by integrating the power spectrum appropriately the powers

P and P are given by

P = P cos 2 T (8.2)

P = P sin 2 T  (B.3)

In equations B.2 and B.3 the effects of local reference phase jitter have

been neglected since at this stage in the IMP design these effects are

secondary relative to the overall system.

In Appendix C, (Pc/P) and (Ptlm/P) are listed in dB. This

allows P and P to be found as a function of T byc tim

P (dBm) = P(dBm) + 20 log cos T . (B.4)

P tm(dBm) = P(dBm) + 20 log sin T. (B.5)

It is with these equations and the set of bounds discussed in the text

that the optimum.value of T was chosen.

Consider now

S2 (t) = v5i sin[wct + 2Ps cos[~ t +(cos- m)X(t)] + Tb(t)],

(B.6)
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where P, w , T, and b(t) are as before, and Psc is the total subcarrier

power, wsc is the subcarrier frequency, m is the subcarrier modulation

index, and X(t) is a random bit stream with values ±1. The waveform S2 (t)

mathematically represents a prime carrier modulated by a subcarrier with

telemetry and also by a pseudo-random ranging signal, i.e., Tb(t).

Arguments similar to those previously given hold here as well,

i.e., there is power in the carrier (a discrete component of the spectrum);

there is power in the subcarrier and its sidebands (taken together); there

is power in the ranging sidebands. Due to the subcarrier presence extra

terms are involved. Also Bessel functions appear due to the cosine modu-

lation of a sine carrier. Again reference 19 gives

P = P cos 2 
T j 2 ( 2 P ) (B.7)

c o sc

P P 2 cos2  J 2(2/ -) (B.8)tim 1 sc

P = P sin 2 T J 2 (V2- ). (B.9)
pn o sc

Appendix C lists the factors P c/P, P t/P, and P pn/P as a

function of the two indices T and (/2T2 ). As a result these indices cansc

be optimized to give the desired power margins for the carrier, ranging,

and telemetry subsystems.

Coding Gain

In the text the term "coding gain" was used. A discussion

will be given here to elaborate on the term and its meaning.
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It is well known that coding (and.convolutional coding in

particular) can be used to improve the accuracy of bit decisions in trans-

mitting information over a channel (see reference 3). This is done at

the expense of bandwidth occupancy and hardware complexity. To oversimplify

the analysis, it can be said that the standard curve of (ideal PSK) bit

error probability (BEP) versus bit energy per noise density ratio (Eb/N o )

is replaced by another curve which gives lower Eb/No for a fixed BEP than

before. Referring to Figure B.1, then, the coding gain is nothing more

than the difference (at a given BEP) between the standard curve and the

coding curve.

In the Figure B.1, the coding gain for a Sequential decoder

is singled out at 10- 5 BEP and 10-4 BEP. Note how the Sequential decoder

gives more gain at very low BEP than the Viterbi decoder. This is due to

the steepness of the coding curve and is a major factor in a system study

such as this one.

In the text the standard curve was used to calculate margins

and then a coding gain was employed to improve the margin.
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APPENDIX C

MODULATION INDEX TABLES

In this appendix are the results of solving the following

equations by a digital computer.

Lossl(CAR.) = 20 log [J (ITLM) cos (IPN)] (C.1)

Loss 1 (PN) = 20 log [Jo (ITLM) sin (IPN)] (C.2)

Loss (TLM) = 20 log [2J (ITLM) cos (IPN)] (C.3)

If PT is the total power (in dBm) in the prime carrier IF,

then the carrier power (in dBm) accounting for modulation is (in dBm)

PCAR. = PT + Loss(CAR.); (C.4)

the ranging power is

PPN = PT + Loss(PN); (C.5)

the telemetry subcarrier power is

PTLM = PT + Loss(PN). (C.6)

The parameter IPN is the ranging modulation index, i.e., the

prime carrier phase deviation in the absence of a subcarrier, and the

parameter ITLM is the telemetry subcarrier index, i.e., the square root

of two times the subcarrier power (Refer to Appendix B for details).

The results of equations C.1 through C.3 are used in the text

the pick the optimum modulation indices in the downlink when ranging and

telemetry are sent.
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In the case of prime carrier modulation by the telemetry

the following equations apply instead of C.1 and C.3.

Loss2(CAR.) = 20 log cos (ITLM) (C. A)

Loss 2 (TLM) = 20 log sin (ITLM) (C.3A)

Equations C.4 and C.6 are then used as before. Equations C.1A

and C.3A were also solved by computer with the results listed in the appendix.

As a side benefit of the program a listing of the solutions to

the following equations is also presented in this appendix.

Loss3(CAR.) = 20 log Jo(ITLM) (C.1 B)

Loss3(TLM) - 3 = 20 log J1(ITLM) (C.3B
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IPN ITLM LOSS 1 (CAR.) LOSS 1(PN) LOSS 1 (TLM)

0.1 0.1 -0.07 -20.04 -23.07
0.1 0.2 -0.13 -20.10 -17.09
0.1 0.3 -0.24 -20.21 -13.62
0.1 0.4 -0.39 -20.37 -11.20
0.1 0.5 -0.60 -20.57 -9.36
0.1 0.6 -0.84 -20.81 -7.89
0.1 0.7 -1.14. -21.11 -6.70
0.1 0.8 -1.49 -21.46 -5.71
0.1 0.9 -1.90 -21.87 -4.87
0.1 1.0 -2.37 -22.34 -4.17
0.1 1.1 -2.90 -22.87 -3.58
0.1 1.2 -3.51 -23.48 -3.09
0.1 1.3 -4.19 -24.17 -2.69
0.1 1.4 -4.97 -24.95 -2.36
0.1 1.5 -5.86 -25.83 -2.11
0.1 1.6 -6.88 -26.85 -1.93
0.1 1.7 -8.05 -28.02 -1.81
0.1 1.8 -9.41 -29.39 -1.75
0.1 1.9 -11.04 -31.02 -1.76
0.1 2.0 -13.04 -33.01 -1.82
0.1 2.1 -15.61 -35.58 -1.95
0.1 2.2 -19.19 -39.16 -2.14
0.1 2.3 -25.15 -45.12 -2.40
0.1 2.4 -52.06 -72.03 -2.72
0.2 0.1 -0.20 -14.06 -23.21
0.2 0.2 -0.26 -14.12 -17.22
0.2 0.3 -0.37 -14.23 -13.75
0.2 0.4 -0.53 -14.39 -11.33
0.2 0.5. -0.73 -14.59 -9.49
0.2 0.6 -0.97 -14.84 -8.03
0.2 0.7 -1.27 -15.14 -6.83
0.2 0.8 -1.62 -15.49 -5.84
0.2 0.9 -2.03 -15.89 -5.01
0.2 1.0 -2.50 -16.36 -4.30
0.2 1.1 -3.03 -16.90 -3.72
0.2 1.2 -3.64 -17.50 -3.23
0.2 1.3 -4.33 -18.19 -2.82
0.2 1.4 -5.11 -18.97 -2.50
0.2 1.5 -5.99 -19.85 -2.24
0.2 1.6 -7.01 -20.87 -2.06
0.2 1.7 -8.18 -22.04 -1.94
0.2 1.8 -9.55 -23.41 -1.88
0.2 1.9 -11.18 -25.04 -1.89
0.2 2.0 -13.17 -27.04 -1.96
0.2 2.1 -15.74 -29.60 -2.08
0.2 2.2 -19.32 -33.18 -2.27
0.2 2.3 -25.28 -39.15 -2.53
0.2 2.4 -52.19 -66.05 -2.85
0.3 0.1 -0.42 -10.61 -23.43
0.3 0.2 -0.48 -10.68 -17.44
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0.3 0.3 -0.59 -10.78 -13.97
0.3 0.4 -0.75 -10.94 -11.55
0.3 0.5 -0.95 -11.14 -9.71
0.3 0.6 -1.20 -11.39 -8.25
0.3 0.7 -1.50 -11.69 -7.05
0.3 0.8 -1.85 -12.04 -6.06
0.3 0.9 -2.25 -12.45 -5.23
0.3 1.0 -2.72 -12.91 -4.53
0.3 1.1 -3.25 -13.45 -3.94
0.3 1.2 -3.86 -14.05 -3.45
0.3 1.3 -4.55 -14.74 -3.04
0.3 1.4 -5.33 -15.52 -2.72
0.3 1.5 -6.21 -16.41 -2.47
0.3 1.6 -7.23 -17.42 -2.28
0.3 1.7 -8.40 -18.59 -2.16
0.3 1.8 -9.77 -19.96 -2.11
0.3 1.9 -11.40 -21.59 -2.11
0.3 2.0 -13.40 -23.59 -2.18
0.3 2.1 -15.96 -26.15 -2.31
0.3 2.2 -19.54 -29.73 -2.50
0.3 2.3 -25.50 -35.70 -2.75
0.3 2.4 -52.41 -62.60 -3.07
0.4 0.1 -0.74 -8.21 -23.75
0.4 0.2 -0.80 -8.28 -17.76
0.4 0.3 -0.91 -8.39 -14.29
0.4 0.4 -1.07 -8.54 -11.87
0.4 0.5 -1.27 -8.74 -10.03
0.4 0.6 -1.51 -8.99 -8.57
0.4 0.7 -1.81 -9.29 -7.37
0.4 0.8 -2.16 -9.64 -6.38
0.4 0.9 -2.57 -10.05 -5.54
0.4 1.0 -3.04 -10.52 -4.84
0.4 1.1 -3.57 -11.05 -4.26
0.4 1.2 -4.18 -11.66 -3.76
0.4 1.3 -4.87 -12.34 -3.36
0.4 1.4 -5.64 -13.12 -3.04
0.4 1.5 -6.53 -14.01 -2.78
0.4 1.6 -7.55 -15.02 -2.60
0.4 1.7 -8.72 -16.19 -2.48
0.4 1.8 -10.08 -17.56 -2.42
0.4 1.9 -11.71 -19.19 -2.43
0.4 2.0 -13.71 -21.19 -2.49
0.4 2.1 -16.28 -23.76 -2.62
0.4 2.2 -19.86 -27.34 -2.81
0.4 2.3 -25.82 -33.30 -3.07
0.4 2.4 -52.73 -60.20 -3.39
0.5 0.1 -1.16 -6.41 -24.17
0.5 0.2 -1.22 -6.47 -18.18
0.5 0.3 -1.33 -6.58 -14.71
0.5 0.4 -1.49 -6.74 -12.29
0.5 0.5 -1.69 -6.94 -10.45
0.5 0.6 -1.93 -7.19 -8.99
0.5 0.7 -2.23 -7.48 -7.79
0.5 0.8 -2.58 -7.84 -6.80
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0.5 0.9 -2.99 -8.24 -5.96
0.5 1.0 -3.46 -8.71 -5.26
0.5 1.1 -3.99 -9.24 -4.68
0.5 1.2 -4.60 -9.85 -4.18

0.5 1.3 -5.29 -10.54 -3.78
0.5 1.4 -6.06 -11.32 -3.46
0.5 1.5 -6.95 -12.20 -3.20
0.5 1.6 -7.97 -13.22 -3.02
0.5 1.7 -9.14 -14.39 -2.90
0.5 1.8 -10.51 -15.76 -2.84
0.5 1.9 -12.13 -17.39 -2.85
0.5 2.0 -14.13 -19.38 -2.91
0.5 2.1 -16.70 -21.95 -3.04
0.5 2.2 -20.28 -25.53 -3.23
0.5 2.3 -26.24 -31.49 -3.49
0.5 2.4 -53.15 -58.40 -3.81

0.6 0.1 -1.69 -4.99 -24.70
0.6 0.2 -1.75 -5.05 -18.71
0.6 0.3 -1.86 -5.16 -15.24
0.6 0.4 -2.02 -5.32 -12.82
0.6 0.5 -2.22 -5.52 -10.98
0.6 0.6 -2.47 -5.76 -9.52
0.6 0.7 -2.77 -6.06 .- 8.32
0.6 0.8 -3.12 -6.41 -7.33
0.6 0.9 -3.52 -6.82 -6.50
0.6 1.0 -3.99 -7.29 -5.80
0.6 1.1 -4.53 -7.82 -5.21
0.6 1.2 -5.13 -8.43 -4.72
0.6 1.3 -5.82 -9.12 -4.31
0.6 1.4 -6.60 -9.90 -3.99
0.6 1.5 -7.48 -10.78 -3.74
0.6 1.6 -8.50 -11.80 -3.55
0.6 1.7 -9.67 -12.97 -3.43
0.6 1.8 -11.04 -14.34 -3.38
0.6 1.9 -12.67 -15.97 '-3.38
0.6 2.0. -14.67 -17.96 -3.45
0.6 2.1 -17.23 -20.53 -3.58
0.6 2.2 -20.81 -24.11 -3.77
0.6 2.3 -26.78 -30.07 -4.02
0.6 2.4 -53.68 -56.98 -4.34
0.7 0.1 -2.35 -3.84 -25.36
0.7 0.2 -2.42 -3.91 -19.37
0.7 0.3 -2.53 -4.02 -15.90
0.7 0.4 -2.68 -4.17 -13.48
0.7 0.5 -2.88 -4.37 -11.64
0.7 0.6 -3.13 -4.62 -10.18
0.7 0.7 -3.43 -4.92 -8.98
0.7 0.8 -3.78 -5.27 -7.99
0.7 0.9 -4.19 -5.68 -7.16
0.7 1.0 -4.65 -6.14 -6.46
0.7 1.1 -5.19 -6.68 -5.87
0.7 1.2 -5.79 -7.28 -5.38
0.7 1.3 -6.48 -7.97 -4.97
0.7 1.4 -7.26 -8.75 -4.65
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0.7 1.5 -8.15 -9.64 -4.40
0.7 1.6 -9.16 -10.65 -4.21
0.7 1.7 -10.33 -11.82 -4.09
0.7 1.8 -11.70 -13.19 -4.04
0.7 1.9 -13.33 -14.82 -4.04
0.7 2.0 -15.33 -16.82 -4.11
0.7 2.1 -17.89 -19.39 -4.24
0.7 2.2 -21.47 -22.96 -4.43
0.7 2.3 -27.44 -28.93 -4.68
0.7 2.4 -54.34 -55.83 -5.01
0.8 0.1 ' -3.16 -2.91 -26.17
0.8 0.2 -3.23 -2.97 -20.18
0.8 0.3 -3.34 -3.08 -16.72
0.8 0.4 -3.49 -3.24 -14.29
0.8 0.5 -3.69 -3.44 -12.45
0.8 0.6 -3.94 -3.69 -10.99
0.8 0.7 -4.24 -3.98 -9.80
0.8 0.8 -4.59 -4.33 -8.80
0.8 0.9 -5.00 -4.74 -7.97
0.8 1.0 -5.46 -5.21 -7.27
0.8 1.1 -6.00 -5.74 -6.68
0.8 1.2 -6.60 -6.35 -6.19
0.8 1.3 -7.29 -7.04 -5.79
0.8 1.4 -8.07 -7.82 -5.46
0.8 1.5 -8.96 -8.70 -5.21
0.8 1.6 -9.97 -9.72 -5.02
0.8 1.7 -11.14 -10.89 -4.90
0.8 1.8 -12.51 -12.26 -4.85
0.8 1.9 -14.14 -13.89 -4.85
0.8 2.0 -16.14 -15.88 -4.92
0.8 2.1 -18.71 -18.45 -5.05
0.8 2.2 -22.28 -22.03 -5.24
0.8 2.3 -28.25 -27.99 -5.49
0.8 2.4 -55.15 -54.90 -5.82
0.9 0.1 -4.15 -2.14 -27.16
0.9 0.2 -4.22 -2.21 -21.17
0.9 0.3 -4.33 -2.32 -17.71
0.9 0.4 -4.48 -2.47 -15.28
0.9 0.5 -4.68 -2.67 -13.44
0.9 0.6 -4.93 -2.92 -11.98
0.9 0.7 -5.23 -3.22 -10.79
0.9 0.8 -5.58 -3.57 -9.79
0.9 0.9 -5.99 -3.98 -8.96
0.9 1.0 -6.45 -4.45 -8.26
0.9 1.1 -6.99 -4.98 -7.67
0.9 1.2 -7.59 -5.58 -7.18
0.9 1.3 -8.28 -6.27 -6.78
0.9 1.4 -9.06 -7.05 -6.45
0.9 1.5 -9.95 -7.94 -6.20
0.9 1.6 -10.96 -8.95 -6.01
0.9 1.7 -12.13 -10.12 -5.89
0.9 1.8 -13.50 -11.49 -5.84
0.9 1.9 -15.13 -13.12 -5.84
0.9 2.0 -17.13 -15.12 -5.91
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0.9 2.1 -19.70 -17.69 -6.04
0.9 2.2 -23.27 -21.26 -6.23
0.9 2.3 -29.24 -27.23 -6.48
0.9 2.4 -56.14 -54.13 -6.81
1.0 0.1 -5.37 -1.52 -28.38
1.0 0.2 -5.43 -1.59 -22.39
1.0 0.3 -5.54 -1.70 -18.92
1.0 0.4 -5.70 -1.85 -16.50
1.0 0.5 -5.90 -2.05 -14.66
1.0 0.6 -6.15 -2.30 -13.20
1.0 0.7 '-6.45 -2.60 -12.00
1.0 0.8 -6.80 -2.95 -11.01
1.0 0.9 -7.20 -3.36 -10.18
1.0 1.0 -7.67 '-3.82 -9.48
1.0 1.1 -8.21 -4.36 -8.89
1.0 1.2 -8.81 -4.96 -8.40
1.0 1.3 -9.50 -5.65 -7.99
1.0 1.4 -10.28 -6.43 -7.67
1.0 1.5 -11.16 -7.32 -7.42
1.0 1.6 -12.18 -8.33 -7.23
1.0 1.7 -13.35 -9.50 -7.11
1.0 1.8 -14.72 -10.87 -7.06
1.0 1.9 -16.35 -12.50 -7.06
1.0 2.0 -18.35 -14.50 -7.13
1.0 2.1 -20.91 -17.07 -7.26
1.0 2.2 -24.49 -20.64 -7.45
1.0 2.3 -30.46 -26.61 -7.70
1.0 2.4 -57.36 -53.51 -8.02
1.1 0.1 -6.89 -1.02 -29.90
1.1 0.2 -6.95 -1.09 -23.91
1.1 0.3 -7.06 -1.20 -20.44
1.1 0.4 -7.22 -1.35 -18.02
1.1 0.5 -7.42 -1.55 -16.18
1.1 0.6 -7.67 -1.80 -14.72
1.1 0.7 -7.97 -2.10 -13.52
1.1 0.8 -8.32 -2.45 -12.53
1.1 0.9 -8.72 -2.86 -11.70
1.1 1.0 -9.19 -3.32 -11.00
1.1 1.1 -9.72 -3.86 -10.41
1.1 1.2 -10.33 -4.46 -9.92
1.1 1.3 -11.02 -5.15 -9.51
1.1 1.4 -11.80 -5.93 -9.19
1.1 1.5 -12.68 -6.82 -8.93
1.1 1.6 -13.70 -7.83 -8.75
1.1 1.7 -14.87 -9.00 -8.63
1.1 1.8 -16.24 -10.37 -8.58
1.1 1.9 -17.87 -12.00 -8.58
1.1 2.0 -19.87 -14.00 -8.65
1.1 2.1 -22.43 -16.57 .- 8.78
1.1 2.2 -26.01 -20.14 -8.97
1.1 2.3 -31.97 -26.11 -9.22
1.1 2.4 -58.88 -53.01 -9.54
1.2 0.1 -8.84 -0.63 -31.85
1.2 0.2 -8.90 -0.70 -25.86
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1.2 0.3 -9.01 -0.81 -22.39
1.2 0.4 -9.17 -0.96 -19.97
1.2 0.5 -9.37 -1.16 -18.13
1.2 0.6 -9.62 -1.41 -16.67
1.2 0.7 -9.92 -1.71 -15.47
1.2 0.8 -10.27 -2.06 -14.48
1.2 0.9 -10.67 -2.47 -13.65
1.2 1.0 -11.14 -2.94 -12.95
1.2 1.1 -11.68 -3.47 -12.36
1.2 1.2 .- 12.28 -4.08 -11.87
1.2 1.3 -12.97 -4.76 -11.46

1.2 1.4 -13.75 -5.54 -11.14

1.2 1.5 -14.63 -,6.43 -10.89
1.2 1.6 -15.65 -7.44 -10.70
1.2 1.7 -16.82 -8.61 -10.58
1.2 1.8 -18.19 -9.98 -10.53

1.2 1.9 -19.82 -11.61 -10.53
1.2 2.0 -21.82 -13.61 -10.60
1.2 2.1 -24.38 -16.18 -10.73
1.2 2.2 -27.96 -19.75 -10.92
1.2 2.3 -33.93 -25.72 -11.17
1.2 2.4 -60.83 -52.62 -11.49
1.3 0.1 -11.48 -0.34 -34.48
1.3 0.2 -11.54 -0.41 -28.50
1.3 0.3 -11.65 -0.52 -25.03
1.3 0.4 -11.80 -0.67 -22.61
1.3 0.5 -12.01 -0.87 -20.77
1.3 0.6 -12.25 -1.12 -19.30
1.3 0.7 -12.55 -1.42 -18.11
1.3 0.8 -12.90 -1.77 -17.12
1.3 0.9 -13.31 -2.18 -16.28
1.3 1.0 -13.78 -2.65 -15.58
1.3 1.1 -14.31 -3.18 -14.99
1.3 1.2 -14.92 -3.79 -14.50
1.3 1.3 -15.60 -4.47 -14.10
1.3 1.4 -16.38 -5.25 -13.77
1.3 1.5 -17.27 -6.14 -13.52
1.3 1.6 -18.29 -7.15 -13.34
1.3 1.7 -19.46 -8.33 -13.22
1.3 1.8 -20.82 -9.69 -13.16
1.3 1.9 -22.45 -11.32 -13.17
1.3 2.0 -24.45 -13.32 -13.23
1.3 2.1 -27.02 -15.89 -13.36
1.3 2.2 -30.60 -19.47 -13.55
1.3 2.3 -36.56 -25.43 -13.81
1.3 2.4 -63.47 -52.34 -14.13
1.4 0.1 -15.41 -0.15 -38.42
1.4 0.2 -15.48 -0.21 -32.44
1.4 0.3 -15.59 -0.32 -28.97
1.4 0.4 -15.74 -0.48 -26.55
1.4 0.5 -15.94 -0.68 -24.71
1.4 0.6 -16.19 -0.93 -23.24
1.4 0.7 -16.49 -1.23 -22.05
1.4 0.8 -16.84 -1.58 -21.06
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1.4 0.9 -17.25 -1.98 -20.22
1.4 1.0 -17.72 -2.45 -19.52
1.4 1.1 -18.25 -2.99 -18.93
1.4 1.2 -18.86 -3.59 -18.44
1.4 1.3 -19.54 -4.28 -18.04
1.4 1.4 -20.32 -5.06 -17.71
1.4 1.5 -21.21 -5.94 -17.46
1.4 1.6 -22.22 -6.96 -17.28
1.4 1.7 -23.40 -8.13 -17.16
1.4 1.8 -24.76 -9.50 -17.10
1.4 1.9 -26.39 -11.13 -17.11
1.4 2.0 -28.39 -13.13 -17.17
1.4 2.1 -30.96 -15.69 -17.30
1.4 2.2 -34.54 -19.27 -17.49
1.4 2.3 -40.50 -25.24 -17.75
1.4 2.4 -67.41 -52.14 -18.07
1.5 0.1 -23.03 -0.04 -46.04
1.5 0.2 -23.09 -0.11 -40.05
1.5 0.3 -23.20 -0.22 -36.58
1.5 0.4 -23.36 -0.37 -34.16
1.5 0.5 -23.56 -0.57 -32.32
1.5 0.6 -23.81 -0.82 -30.86
1.5 0.7 -24.11 -1.12 -29.66
1.5 0.8 -24.46 -1.47 -28.67
1.5 0.9 -24.86 -1.88 -27.84
1.5 1.0 -25.33 -2.35 -27.14
1.5 1.1 -25.86 -2.88 -26.55
1.5 1.2 -26.47 -3.49 -26.06
1.5 1.3 -27.16 -4.17 -25.65
1.5 1.4 -27.94 -4.95 -25.33
1.5 1.5 -28.82 -5.84 -25.08
1.5 1.6 -29.84 -6.85 -24.89
1.5 1.7 -31.01 -8.02 -24.77
1.5 1.8 -32.38 -9.39 -24.72
1.5 1.9 -34.01 -11.02 -24.72
1.5 2.0 -36.01 -13.02 -24.79
1.5 2.1 -38.57 -15.59 -24.92
1.5 2.2 -42.15 -19.17 -25.11
1.5 2.3 -48.11 -25.13 -25.36
1.5 2.4 -75.02 -52.03 -25.68
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ITLM(RAD.) LOSS2 (CAR.) LOSS2 (TLM)

0.1 -0.04 -20.01

0.2 -0.17 -14.04

0.3 -0.40 -10.59

0.4 -0.71 -8.19

0.5 -1.13 -6.39

0.6 -1.67 -4.96

0.7 -2.33 . -3.82

0.8 -3.14 -2.89

0.9 -4.13 -2.12

1.0 -5.35 -1.50

1.1 -6.87 -1.00

1.2 -8.82 -0.61

1.3 '-11.45 -0.32

1.4 -15.39 -0.13

1.5 -23.01 -0.02

ITLM(RAD.) LOSS3(CAR.) LOSS3(TLM)-3 c
0.1 -0.02 -26.03
0.2 -0.09 -20.04
0.3 -0.20 -16.58
0.4 -0.35 -14.15
0.5 -0.55 -12.31
0.6 -0.80 -10.85
0.7 -1.10 -9.66
0.8 -1.45 -8.66
0.9 -1.86 -7.83
1.0 -2.32 -7.13
1.1 -2.86 -6.54
1.2 -3.46 -6.05
1.3 -4.15 -5.65
1.4 -4.93 -5.32
1.5 - -5.82 -5.07
1.6 -6.83 -4.88
1.7 -8.00 -4.76
1.8 -9.37 -4.71
1.9 -11.00 -4.71
2.0 -13.00 -4.78
2.1 -15.57 -4.91
2.2 -19.14 -5.10
2.3 .- 25.11 -5.35
2.4 -52.01 -5.68
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APPENDIX D

FORTRAN IME LINK CALCULATION COMPUTER PROGRAM

//mvxgdecl job (0001,0051,1,1,0,,,,,0197313121,20046,masao,dec,n,
// ###),'038cartier20046',msglevel=l,msgclass=a,class=e
/*route vts 042,save
//stepl exec fortgclg
//fort.sysin dd *

dimension gtpwr(4),gtxl(4),codeg(12),srapwr(4),
lgripwr(12),grden(12),gtant(4),upath(4),srant(4),srxl(4),
2srden(4),sripwr(4),utosno(4),urfac(4),cofac(4),urth(4),
3rban(4),bplim(4),prsn(12),qrxl(4),qrant( 4 ),dpath(4),
4spoint(4),stant(4),stxl(4),stpwr(4),dsol(4),grapwr(4),
5dtosno(12),drfacs(12),dtfacs(12),rfban(12),
6dcfacs(12),drsnos(12),dcsnos(12),dtsnos(12),
7desnos(12),rmars(12),cmars(12),tmars(12),
8comars(12),urmar(4),
9usol(4),dcth(12),drth(12),dtth(12)
read(5,5000)gtnwr,qtxl,qtant,upath,srant,srxl,usol,srden

5000 format(4f10.2)
read(5,5001)iflag,jflan,kflaq, flaq

5001 format(4il)
write(6,6000)

6000 format('l',t7,' IMP-H. BEST CASE',t34,'IMP-H. WORST CASE',t60,
I'lIMP-M.-D. BEST CASE',t87,'IMP-M.-D. WORST CASE'/)

6001 format(4(11x,f6.1,10x))
400 do 500 i=1,4

srapwr(i)=gtpwr(i)+gtxl(i)+qtant(i)+upath(i)
sripwr(i)=srapwr(i)+srant(i)+srxl(i)
go to (401,403),jflaq

401 srden(i)=rise(srden(i),sripwr(i))
403 utosno(i)=sripwr(i)-(srden(i)-usol(i))
500 continue

write(6,5001)gtpwr,gtxl,qtant,upath,srapwr,srant,srxl,sripwr,
lusol,srden,utosno
If(iflag-1)600,4000,600

600 read(5,5000)urfac,cofac,urth,rban
do 700 i=1,4
rfban(i)=3.+rban(i)
x=10.**((utosno(i)-rfban(i))/10.)'
bplim(i)=10.*aloglO((1.+(2.*x))/(1.273239538+x))
prsn(i)=(utosno(i)-rfban(i))+bplim(i)+urfac(i)+cofac(i)
urmar(i)=prsn(i)-urth(i)

700 continue
write(6,6001)bplim,urfac,cofac,(prsn(i),i=1,4),urth,
lurmar,rban
if(iflag-2)800,4 000,800

800 read(5,5000)stpwr,stxl,stant,sDoint,dDath,qrant,qrxI
read(5,5002)dsol,(grden(i),i=1,3),(dcth(i),i=1,4),(drth(i),i=1,4),
1(dtth(i),i=1,4)

5002 format(4flO.2/3f10.2/4f10.2/4f10.2/4f10.2)
do 900 i=1,4
grapwr(i)=stpwr(i)+stxl(i)+stant(i)+spoint(i)+dpath(i)
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gripwr(i)=grapwr(i)+grant(i)+grxl(i)
900 continue

write(6,6001)stpwr,stxl,stant,spoint,dpath,grapwr,grantgrxi,
l(gripwr(i),i=1,4),dsol
do 1000 j=1,4
i=5-J
gripwr(3*i-2)=gripwr(i)+dsol(i)
gripwr(3*i-l)=gripwr(i)+dsol(i)
gripwr(3*i)=gripwr(i)+dsol(i)
prsn(3*i-2)=prsn(i)
prsn(3*i-1)=prsn(i)
prsn(3*i)=prsn(i)
rfban(3*i-2)=rfban(i)
rfban(3*i-1)=rfban(i)
rfban(3*i)=rfban(i)
dcth(3*i-2)=dcth(i)
dcth(3*i-1)=dcth(i)
dcth(3*i)=dcth(i)
drth(3*i-2)=drth(i)
drth(3*i-1)=drth(i)
drth(3*i)=drth(i)
dtth(3*i-2)=dtth(i)
dtth(3*i-1)=dtth(i)
dtth(3*i)=dtth(i)

1000 continue
do 1001 i=1,3
grden(i)=grden(i)
grden(i+3)=grden(i)
grden(i+6)=grden(i)
grden(i+9)=grden(i)

1001 continue
do 1002 i=1,12

go to (1111,1112),kfiag
1111 grden(i)=rise(qrden(i),qripwr(i))
1112 dtosno(i)=gripwr(i)-grden(i)
1002 continue

write(6,6002)grden,dtosno
6002 format(t3,f6.1,11f9.1)

if(iflag- 3 )302,301,302
301 write(6,6003)drth,dcth,dtth
6003 format(6(/),3(/t3,f6.1,11f9.1))

go to 4000
302 read(5,5003)(drfacs(i),i=1,2),(dcfacs(i),i=1,2),

1(dtfacs(i),i=1,2),
2(codeq(i),i=1,2)

5003 format(2fl0.1)
do 303 k=1,2
do 303 j=1,6
i=3-k
jsub=j+((i-l)*6)
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drfacs(jsub)=drfacs(i)
dcfacs(jsub)=dcfacs(i)
dtfacs(jsub)=dtfacs(i)
codeg(jsub)=codeg(i)

303 continue
do 304 i=1,12
drsnos(i)=dtosno(i)+drfacs(i)
dcsnos(i)=dtosno(i)+dcfacs(i)
dtsnos(i)=dtosno(i)+dtfacs(i)
y=10.**(prsn(i)/10.)
z=10.**((drsnos(i)-rfban(i))/10.)
desnos(i)=(10.*alogl0((y*z)/(1.+y+z))+rfban(i)
rmars(i)=desnos(i)-drth(i)
cmars(i)=dcsnos(i)-dcth(i)
tmars(i)=dtsnos(i)-dtth(i)
comars(i)=tmars(i)+codeg(i)

304 continue
go to (305,306,307),Iflag

305 write(6,6002)drfacs,dcfacs,dtfacs,drsnos,dcsnos,dtsnos,desnos,
ldrth,dcth,
2dtth,rmars,cmars,tmars,codeg,comars
go to 4000

306 write(6,6004)drfacs,dcfacs,drsnos,dcsnos,desnos,drth,
ldcth,rmars,cmars

6004 format(2(t3,f6.1,11f9.1/)/2(t3,f6.1,11f9.1/)/
13(t3,f6.1,11f9.1/)/2(t3,f6.1,11f9.1/))
go to 4000

307 write(6,6005)dcfacs,dtfacs,dcsnos,dtsnos,dcth,dtth,
Icmars,tmars,codeg,comars

6005 format(/2(t3,f6.1,11f9.1/)/2(t3,f6.1,11f9.1/)
1//2(t3,f6.1,11f9.1/)/4(t3,f6.1,11f9.1/))

4000 continue
stop
end
function rise(thres,pwrin)
if(pwrin+120)4,4,1

1 if(pwrin+80)3,3,2
2 rise=pwrin-76.

go to 5
3 rise=(thres+175.5)-(9.0246958e-6*pDwrin**4

1+3.5684297e-3*pwrin**3+.51151562*pwrin**2
2+30.889069*pwrin+811.28955)
go to 5

4 rise=thres
5 return

end
/*
//go.sysin dd *
73. 73. 73. 73.
-.1 -.5 -.1 -.5
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52.5 52.5 52.5 43.
-222.1 -222.1 -202.1 -202.1
2. -3. 2. -3.
-1. -2. -1. -2.
0 0 0 0
-166.8 -166.8 -166.8 -166.8
4221
-4.7 -4.7 -4.7 -4.7
3. 3. 3. 3.
0 0 0 0
60. 60. 60. 60.
34. 34. 30. 30.
-1.5 -3. -1.5 -3.
9. 9.. 9. 9.
0. -2. 0. .- 2.
-223.1 -223.1 -204.9 -204.9
52.5 43. 52.5 43.
-. 2 -. 5 -. 2 -. 5
0. -11.2 0. 0.
-180.1 -178.8 -176.3
30. 30. 30. 30.
23. 23. 23. 23.
35.7 44.7 44.7 53.8
-16. -16.
-2. -2.
-5. -5.
6. 6.
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APPENDIX E

CHOICE OF OPTIMAL METRIC FOR GAUSSIAN NOISE ENVIRONMENT

Let the noise on the channel be additive Gaussian noise with

double-sided power spectrum N /2 watts/Hz. Given a state assumed to be the

correct one and a transition 'incident out of this state, let xjlxj2 be the

antipodal representation of the coded bit pair (i.e., x. and x +1)
1 a j2 -

belonging to that transition at time j. Similarly, it is assumed that the

modem assumes the bit 1(0) is received if the output signal is positive

(negative). Again, here we are deriving results for the rate 1/2 code.

Let the received pair of signals from the modem be denoted by

(r1' r2)'

We define

xj = sgn(rj1 ) E.1

x j2 = sgn(rj2) E.2

a = IrjlI E.3

aj2 = Irj2 1 E.4

The maximum likelihood for sequences x1 and x2 of length n is

obtained for

n 1 (r.-x. )2+(r. -x. )2
Max I 1 exp[- -11 J.2 j2 ] E.5

x-1, x 2 j=1 0 N

Similarly, we obtain the result by minimizing a distance metric which is a

monotonically decreasing function of the term above, i.e.,
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S 2 2 2  2
Min { [r. +x -2r. xj. +r 2+x2-2rj2xj2 ] } E.6

x-lx 2  =1 1 j 1 1 j2 j2 j2

which is obtained by taking the negative logarithm of the product and deleting

constant terms which do not affect the decision over xl,' 2 . Furthermore,

terms within that expression which are independent of the choice of xjl or

xj2 may be neglected as only the relative values of the metric are of concern.

2 2
Thus r. ,r2 may be deleted and, since x and xj2 are either plus or minus

j1 j2 j1 j2

one, so can the terms x
2 and xj2.
k1 j2

Thus, the maximum likelihood decision i.s reduced to choose

Min i1 [- x.-r. 2x] E.7
X 2 i=1 2 j 1 J-j2xj

where a factor of 1/2 has been introduced. To each term we add a constant

independent of xjl or x 2 to yield

n
Min j [1 (-rj. +r. ) + (-r x+r j2xj )] E.8
XlX12  j1 j1 Ij1 j1 j2 j2 j2 j2

In view of the definitions, we have

r. = x. al E.9

ra E.10j2 = xj2'j2

Thus each term in the sum is

1 1 *
.L x. a.1 [x.-xj ] + . [x.-x.] E.11
j c1C2  2 1 j1 j j-x 2 j2 j2 E.2 j2

and reduces to

0 if x.jl = xj and xj2 = xj2 E.12
J1 j x 2  j2

a.j if x. j x. and xj = j2 E.13
J1 1 1

C = (1 + x..)/2
JI
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aj2 if Xl = .j and x.j2 .j2 E.14

aj1+aj2 if jl and x 2  2 E.15

The above table then specifies the construction of a simple

metric which, for each state, is the accumulation of the absolute values of

the quantized outputs of the modem for each of the transmitted bits. If hard

decisions are used, all terms aj. j =1,...n and i = 1,2 are unity and the

count is the Hamming distance. If soft decisions are used, the count remains

monotonic in the likelihood function and thus is optimal.

The transition equations 3.27 through 3.30 are derived as

follows. Using the definition given before, i.e.,

C. = x. + 1 /2, C. = 1 - C. = - x.i /2, E.16

then the transition equations follow directly, e.g.,

11 2 ji ji 2

2 ( 2 
x 

1 x2
22 2)

= ajl C1 + aj2 C2 E.17

The transformation in E.16 is simply a logic level change.
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APPENDIX F

AMP zEX-
TAPE RECORDER SPECIFICATIONS

specifications
AR-700
instrumentation recorder

Effective December 1, 1971

GENERAL DESCRIPTION Tape Speed Accuracy: ±0.2% maximum error in tachometer mode
measured per IRIG 106-71.

The AR-700 is a compact intermediate or wideband multichannel
recorder designed for airborne and other stringent environments. Servo Control Track: Built-in 100 kHz reference standard at 60 ips;
It is ruggedly constructed, uses servo-controlled time base correction proportionately lower at lower tape speeds.
and may be electrically switched over a range of six speeds. Up to Fast Wind Time: For 12Y-inch reel with 7200 feet of tape, less
seven channels of record electronics are provided on machines using than thirteen minutes.
%" tape on 10%'" or 12%" precision reels, or up to 14 channels on
machines equipped for 1" tape. Start Time: Time required from start command to meet flutter

specifications is 5 seconds or less at 60 ips. Lower at lower speeds.
The system design emphasizes small size, ease of operation and
serviceability. Closed loop capstan design, concentric reels and a Stop Time: Maximum of 2.5 seconds from 60 ips. Lower at lower
fast response capstan servo are featured. The AR-700 is designed for speeds.
remote sequential operation for those needing uninterrupted re- Controls: Momentary pushbutton to ground for Power ON/OFF,
cording. Additional optional features and custom modifications Stop, Drive, Fast Forward, Fast Reverse, Record, Airborne Record,
are available to satisfy every need. Forward/Reverse Drive determined by toggle switch. Speed Selec-

tion by a seven position rotary switch. Indicator Lights are provided
TAPE TRANSPORT for Ready, Bias, and Sync.

Tape Speeds: Six speeds-60, 30, 15. 7-1/2, 3-3/4 and 1-7/8 ips. Tape Specifications: Either' 2 or 1 inch tape of 1 mil or 1% mil
Electrically selected with rotary switch. polyester base. Ampex tape type 772 on precision reels is

recommended.
Reels: 12-1/2 inch or 10-1/2 inch, precision reels.

Heads: Head geometry per IRIG 106-71.
Flutter: Percent measured per IRIG 106-71 (2 sigma).
Tape Speed

(ips) Bandpass (Hz) % Flutter % Flutter2  DIRECT SIGNAL ELECTRONICS
60 0.2 to 10,000 0.30 0.40 INTERMEDIATE BAND, DIRECT
30 0.2 to 5,000 0.32 0.60
15 0.2 to 2,500 0.35 0.80 Frequency Response and Signal-to-Noise:
7-1/2 0.2 to 1,250 0.40 1.50 SNR *1
3-3/4 0.2 to 625 0.6 1.80 Ground
1-7/8 0.2 to 312 0.7 2.0 Tape Speed Bandwidth Monitor Reproduce-

Dynamic Skew: Measured between adjacent tracks on the same (ips) (±3 dB)"* (dB) (dB)
head stack. 60 300 Hz to 300 kHz 33 36

Tape Speed Skew' Skew 2  30 150 Hz to 150 kHz 33 36

(ips) (microseconds) (microseconds) 15 100 Hz to 75 kHz 33 36
7-1/2 100 Hz to 38 kHz 32 36

30 ±10.5 ±3.0 3-3/4 100 Hz to 19 kHz 31 36
15 ±2.0 ±8.0 1-7/8 100 Hz to 10 kHz 30 34

7-1/2 ±4.0 ±20.0 Input Level: 0.25 to 4.0 volts rms.
3-3/4 :6.0 ±35.0
1-7/8 +12.0 ±70.0 Input Impedance: 10K ohms ±10% in parallel with no more than

100 pf to ground.
NOTES:
1) Under Laboratory conditions. Output: When used with reproduce leads and preamps: 30 dB of
2) Reproduced under Laboratory conditions after recording subject gain available. Output is unequalized.

to vibration specified by MIL-STD-810B, Notice 1, Figure WIDEBAND, DIRECT
514.1-2 Curve D.

Servo: Fast response servo operates from internal crystal reference. Frequency Response and Signal-to-Noise:
All tape speeds are under servo control at all times. SNR*2

Ground
Time Base Error: Measured as the difference between crystal Tape Speed Bandwidth Monitor Reproduce"
reference and capstan tachometer. (No sync off tape provisions are (ips) (13 dB)"* (dB) (dB)
included in the machine.) 60 400 Hz to 1 MHz 20 20
Tape Speed TBE 30 400 Hz to 500 kHz 18 .20

(ips) (microseconds) 15 400 Hz to 250 kHz 18 20
60 ±1.0 7-1/2 400 Hz to 125 kHz 18 20
30 ±2.0 3-3/4 400 Hz to 63 kHz 16 18
15 ±4.0 1-7/8 400 Hz to 31 kHz 15 17
7-1/2 ±6.0
3-3/4 ±8.0 Input Level: 0.25 to 4.0 volts.
1-7/8 ±10.0 Input Impedance: Selectable 1K ohm ±10% or 75 ohms ±10%.

When reproduced in tape servo mode on an FR-2000 TBE will be Output: When used with reproduce leads and breamps: 40 dB of
less than ±0.6 microseconds at 60 ips. gain available. Output is unequalized.
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Specifications

AR-700 Instrumentation Recorder

*t Measured at the output of an 18 dB per octave filter using a 15 13.5 DC to 2.5 kHz 43 46
1 kHz signal at 60 ips, normal record level and 1% third 7-1/2 6.75 DC to 1.25 kHz 43 46
harmonic distortion. 3-3/4 3.375 DC to 625 Hz 41 44

* 2 Measured at the output of an 18 dB per. octave filter using 1-7/8 1.6875 DC to 312 Hz 40 43
100 kHz signal at 60 ips to set normal record level for 1% third W1, I AND L BANDS
harmonic distortion.

*Reproduced on an Ampex FR-2000 or equivalent. Monitor Input Level: ±0.5 to ±5.0 volts for full deviation.

output response is ±4 dB. Input Impedance: 100K ohms ±5% selectable with jumper resistor
in parallel with no more than 100 pf unbalanced to ground.

FM SIGNAL ELECTRONICS D.C. Drift: Less than ±0.5% of full deviation over any 100C
WIDEBAND GROUP II temperature change from -29 0 C to +55 0 C after 15 minute warmup.

Signal-to-Noise** Less than ±1.5% total drift over full temperature range.
CenteTape Speed r Monitor Rroundce D.C. Linearity: ±0.5% of total deviation measured per IRIG 106-71

Tape Speed Carrier Monitor Reproduce at any temperature from -29'C to +55'C.
lips) Freq (kHz) Bandwidth" (dB) (dB)mperature from -29 0 C to +55"C.

60 450 DC to 250 kHz 29 32 Harmonic Distortion: Less than 2% total for any frequency up to
30 225 DC to 125 kHz 28 31 0.8 Fco.
15 112.5 DC to 62.5 kHz 27 30 **RmsSignal to Rms Noise Ratio.
7-1/2 56.25 DC to 31.25 kHz 26 29 **Reproduced-on an Ampex FR-2000 or equivalent
3-3/4 28.125 DC to 15.6 kHz 23 26
1-7/8 14.06 DC to 7.8 kHz 22 25

Input Level: ±0.5 to ±5.0 volts for full deviation. POWER REQUIFIEMENTS (AIRBORNE)

Input Impedance: 75 ohms ±5% shunted by 100 pf unbalanced to Voltage: 24 to 28.v v dc per MIL-STD-704A, Category B.
ground. .Power Consumption: 175 watts steady state maximum at 60 ips
D.C. Drift: Less than ±0.5% of full deviation over any 10"C in the record mode with 14 tracks of direct record electronics.
temperature change from -29 0 C to +55 0 C after 16 minute Less than 140 watts at 1-7/8 ips under the same conditions.
warmup. Less than 1.5% of full deviation over full temperature Starting surges may be as high as 15 amps depending on configura-
range. tion, input voltage, and tape pack radius. Below 100C heaters

D.C. Linearity: ±0.5% of total deviation measured per IRIG 106-71 consume an additional 250 watts.

at any temperature from -29 0 C to +55 0C.
ENVIRONMENT

Harmonic Distortion: Less than 3% total for all frequencies up to
0.8 Fco. Temperature: Operating per MIL-E-5400L Class 1, except the lower -

*Frequency Response down no more than -1 dB at 0.32 Fco temperature limit of the transport with tape shall be -29 0 C.
4 B at 0.8 F and -6 B at FHeater power must be applied one hour before operation below

dB at 0.8 Fco and -6 dB at Fco 4 0C. Temperature shall be altitude derated per MIL-E-5400L,
**Rms signal to rms noise ratio. Figure 3, Sheet 1, Curve A.

WIDEBAND GROUP I Signal-to-Noise*' Storage: -54 0 C to +710C without tape.
Center Ground

Tape Speed Carrier Bandwidth Monitor Reproduce*'* No degradation in system performance will be experienced due to

lips) Freq (kHz) (±1/2 dB) (dB) (dB) temperature extremes.

60 216 DC to 40 kHz 46 48 Altitude: Operating to 50,000 feet. Non-Operating to 70,000 feet.
30 108 DC to 20 kHz 45 48 Temperature derating as above.
15 54 DC to 10OkHz 43 46
7-1/2 27 DC to 5 kHz 43 44 Humidity: 30% to 95% non condensing.
3-3/4 13.5 DC to 2.5 kHz 40 43 Vibration: Tested to levels specified in MIL-STD-810B Notice 1,
1-7/8 6.75 DC to 1.25 kHz 38 41 Figure 514.1-2 curve D. Degradation in performance as noted.

INTERMEDIATE BAND Specifications are for vibration in any axis.

Signal-to-Noise.* Shock: Recorder will meet full performance specifications after
Center Ground application of shock per MIL-STD-810B Figure 516.1-2 procedure I

Tape Speed Carrier Bandwidth Monitor Reproduce- (15g half-sine-11 milliseconds) while operating. Recorder will
lips) Freq (kHz) (±1/2 dB) (dB) (dB) meet crash safety requirements of procedure III of the above

60 108 DC to 20 kHz 46 49 specification.

30 54 DC to 10kHz 45 48 Electromagnetic Interference: Tested to levels specified in MIL-
15 27 DC to 5 kHz 43 46 STD-461. Levels may be exceeded at discrete frequencies depend-

7-1/2 13.5 DC to 2.5 kHz 43 46 ing on specific system configuration.
3-3/4 6.75 DC to 1.25 kHz 41 44
1-7/8 3.375 DC to 625 Hz 40 43

PHYSICAL CHARACTERISTICSLOW BAND Signal-to-Noise*
Center Ground Size: 18.7 x 17.5 x 7.0", including shock mounts and mating

Tape Speed Carrier Bandwidth Monitor Reproduce** cable connectors.
(ips) Freq (kHz) (±1/2 dB) (dB) (dB) Weight: 48 pounds without tape for a 14 channel Direct System.

60 54 DC to 10 kHz 46 49 61 pounds without tape for a 14 channel FM System.
30 27 DCto 5kHz 45 48

METRIC CONVERSION TABLES Widths: inches 4 A 1 2
ApplicLble to all Ampe recorders-specfic items may cm 0.635 1.27 2.54 5.08
not apply to the unit described in this sheet. Ba Thicknesses: inches 1 mil 1.5 mdl

.m 0.0254 0.0381
TAPE SPEEDS Length: feet 600 1200 1800 .2500 3600 5000 7000

S 1-7/8 3-3/4 7-1/2 15 30 60 smetes 185 366 549 762 1097 1524 2134etml/s 4.76 9.52 19.05 38.1 76.2 152.4 HEA MENSONS

TAPE DIMENSIONS Gap Scatter Interstack Specing Track Width & Spacing'
Reel: inches 12% 10, 8 miroinches 100 inches 1.5 ±0001 inches 0.050 0.070

cm 31.75 26.67 20.48 mm 0.00254 cn; 3.81 -0.00127 mm 1.27 1.778
'1IRIG)
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specifications

AR-1700
instrumentation recorder

Effective December 1, 1971

GENERAL DESCRIPTION Tape Speed Accuracy: ±0.2% maximum error in tachometer mode
measured per IRIG 106-71.

The AR-1700 is a compact intermediate or wideband'multichannel referene andard
recorder designed for airborne and other stringent environments. Servo Control Track: Built-in 200 kHz reference standard at

It is ruggedly constructed, uses servo-controlled time base correc- 120 ips; proportionately lower at lower tape speeds. May be

tion and may be electrically switched over a range of six speeds. jumpered to any record amplifier.

Up to seven channels of record electronics are provided on Fast Wind Time: For 14-inch reel with 7200 feet of tape, less than
machines using '2" tape on 10Y", 12%" or 14" precision reels, ten minutes.
or up to 14 channels on machines equipped for 1" tape. Start Time: Time required from start command to meet flutter
The system design emphasizes small size, ease of operation and specifications is 9 seconds or less at 120 ips. Lower at lower speeds.
serviceability. Closed loop capstan design, concentric reels and a
fast response capstan servo are featured. The AR-1700 is designed Stop Time: Maximum of 5 seconds from 120 ips. Lower at lower

for remote sequential operation for those needing uninterrupted speeds.

recording. Additional optional features and custom modifications Controls: Pushbuttons for: Power, Stop, Record, Reproduce,
are available to satisfy every need. (Drive), Fast Forward or Reverse and Pilot Run. Forward/Reverse

drive selected by toggle switch. Speed selection by rotary switch.
TAPE TRANSPORT Indicator lights for Ready, Bias and Sync.

Tape Speeds: Six speeds-120, 60, 30, 15, 7-1/2, and 3-3/4 ips. Tape Specifications: Either '2 or 1 inch tape of 1 mil or 1/r mil
Electrically selected with rotary switch. polyester base. Ampex tape type 772 on precision reels is

Reels: 14 inch, 12V, inch or 101 inch, precision reels. recommended.

Flutter: Percent measured per IRIG 106-71 (2 sigma). Heads: Head geometry per IRIG 106-71.

Tape Speed 2 DIRECT SIGNAL ELECTRONICS
lips) Bandpass (Hz) % Flutter] % Flutter

120 0.2 to 10,000 0.24 0.24 INTERMEDIATE BAND, DIRECT

60 0.2 to 10,000 0.28 0.30 Frequency Response and Signal-to-Noise: Signal-to-Noise*
30 0.2 to 5,000 0.30 0.55 Ground
15 0.2 to 2,500 0.33 1.0 Tape Speed Bandwidth Monitor Reproduce'
7-1/2 0.2 to 1,250 0.41 2.2 lips) (±3 dB) (dB) (dB)
3-3/4 0.2 to 625 0.45 2.6 120 300 Hz to 600 kHz, 33 36

Dynamic Skew: Measured between adjacent tracks on the same lead 60 300 Hz to 300 kHz 33 36
stack. 30 150 Hz to 150 kHz 33 36

Tape Speed Skew' Skew 2  15 100 Hz to 75 kHz 33 36

lips) (microseconds) (microseconds) 7-1/2 100 Hz to 38 kHz 32 36

120 0.3 0.5 3-3/4 100 Hz to 19 kHz 31 36

60 1.0 1.5 *Measured at the output of an 18 dB per octave filter using a
30 4.0 3.0 1 kHz signal at 60 ips. Normal record level and 1% third
15 8.0 10 harmonic distortion.

7-1/2 8.0 40 "Reproduced on an Ampex FR-2000 or equivalent. Monitor
3-3/4 15.0 90 output response is ±4 dB.

NOTES: Input Level: 0.25 to 4.0 volts rms.

1) Under Laboratory Conditions. Input Impedance: 10K ohms ±10% in parallel with no more than
2) Reproduced under Laboratory conditions after recording subject 100 pf unbalanced to ground.

to vibration specified by MIL-STD-810B, Notice 1, Figure Output: (When lted with reproduce heads and preamps): 30 dB of
514.1-2 Curve D. gain is available. Output is unequalized.

Servo: Fast response servo operates either from internal crystal WIDEBAND, DIRECT
reference or external reference during record/reproduce modes.
All tape speeds are under servo control at all times. Frequency Response and Signal-to-Noise: Signal-to-Noise*

Time Base Error: Measured as the difference between crystal Ground
reference and capstan tachometer. Tape Speed Bandwidth Monitor Reproduce-

Tape Speed TBi (ips) (3 dB) (dB) (dB)
lips) (microseconds) 120 400 Hz to 2 MHz 20 20

60 400 Hz to 1 MHz 20 20
120 11 30 400 Hz to 500 kHz 18 20
30 +1 15 400 Hz to 250 kHz 18 20
30 - 2 7-1/2 400 Hz to 125 kHz 18 20
15 ±4 3-3/4 400 Hz to 62.5 kHz 16 18

7-1/2 ±8 *Measured at the output of an 18 dB per octave filter using a
3-3/4 ±8 200 kHz reference signal at 120 ips, set for 1% third harmonic

When reproduced in tape mode on an FR-2000 TBE will be no distortion.
more than ±0.4 microseconds at 120 ips. 'Reproduced on an Ampex FR-2000 or equivalent.
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Specifications
AR-1700 Instrumentation Recorder

Input Level: 0.25 to 4.0 volts rms. 60 54 DC to 10 kHz 46 49
30 27 DC to 5 kHz 45 48

Input Impedance: Selectable 75 ohms ±10% or 1K ohms ±10% 15 13.5 DC to 2.5 kHz 43 46
in parallel with no more than 100 pf unbalanced to ground. 7-1/2 6.75 DC to 1.25 kHz 43 46
Output: (When used with reproduce heads and preamps): 40 dB of 3-3/4 3.375 DC to 625 Hz 41 44
gain is available. Output is unequalized., I AND BANDS

FM SIGNAL ELECTRONICS Input Level: ±0.5 to ±5.0 volts for full deviation.

Signal-to-Noise** Input Impedance: 100K ohms ±5% selectable with jumper resistor
Center Ground in parallel with no more than 100 pf unbalanced to ground.

Tape Speed Carrier Monitor Reproduce''' D.C. Drift: Less than 0.5% of full deviation over any 100C
lips) Freq (kHz) Bandwidth* (dB) (dB) temperature change from -29 0 C to +55 0 C after 15 minute warmup.

120 900 DC to 500 kHz 30 33 Less than 1.5% total drift over full temperature range.
60 450 DC to 250 kHz 29 3230 225 DC to 125 kHz 28 31 D.C. Linearity: ±0.5% of total deviation measured per IRIG

15 112.5 DC to 62.5 kHz 27 30 106-71 at any temperature from -29 0 C to +55 0C
7-1/2 56.25 DC to 31.25 kHz 26 29 Harmonic Distortion: Less than 2% total for any frequency up to
3-3/4 28.125 DC to 15.6 kHz 23 26 0.8 Fco.

*Frequency response tolerance down no more than -1 dB at Rms signal to rms noise.
0.32 Fco; down no more than -4 dB at 0.8 Fco; down no more **Reproduced on an Ampex FR-2000or equivalent.
than -6 dB at Fco.eprodued on an Ampe FR-2000 or equivalent.

*'Rms Signal to Rms Noise Ratio. POWER REQUIREMENTS (AIRBORNE)
Input Level: ±0.5 to ±5.0 volts for full deviation.
Input Impedance: 75 ohms ±5% shunted by 100 pf unbalanced to Voltage: 24 to 28.5 v dc per MIL-STD-704A, Category B.
ground. Power Consumption: 300 watts steady state maximum at 120 ips
D.C. Drift: Less than ±0.5% of full deviation over any 100C in the record mode with 14 tracks of direct record electronics.
temperature change from -29 0 C to +55 0 C after 16 minute Maximum surge will not exceed 420 watts. Below 10% C heaters
warmup. Less than 1.5% of full deviation over full temperature consume an additional 250 watts.
range. ENVIRONMENT
D.C. Linearity: ±0.5% of total deviation measured per IRIG
106-71 at any temperature from -29 0 C to +55 0C. Temperature: Operating per MIL-E-5400L, Class 1, except the lower
Harmonic Distortion: Less than 3% of total for all frequencies up temperature limit of the transport with tape shall be -29 0 C.
to 0.8 F Heater power must be applied one hour before operation below

co, 40C. Temperature shall be altitude derated per MIL-E-5400L,
WIDEBAND GROUP I Figure 3, Sheet 1, Curve A.

Signal-to-Noise"" Storage: -54 0 C to +710 C without tape.
Center Ground

Tape Speed Carrier Bandwidth Monitor Reproduce*'' No degradation in system oerformance will be experienced due to
lips) Freq (kHz) (1±1/2 dB) (dB) (dB) temperature extremes.

120 432 DC to 80 kHz 46 48 Altitude: Operating to 50,000 feet. Non-operating to 70,000 feet.
60 216 DC to 40 kHz 46 48 Temperature derating as above.
30 108 DC to 20 kHz 45 48
15 54 DC to 10 kHz 43 46 Humidity: 30% to 95% non condensing.
7-1/2 27 DC to 5kHz 43 44 Vibration: Tested to levels specified in MIL-STD-810B dated
3-3/4 13.5 DC to 2.5 kHz 40 43 June 15, 1967 Figure 514-1 Curve A. Degradation in specifications

as noted. Specifications are for vibration in any axis.
INTERMEDIATE BAND

Signal-to-Noise*' Shock: Recorder will meet full performance specifications after
Center Ground application of shock per MIL-STD-810B Figure 516.1-2 procedure I

Tape Speed Carrier Bandwidth Monitor Reproduce''' (15g half-sine - 11 milliseconds) while operating. Recorder will
lips) Freq (kHz) (11/2 dB) (dB) (dB) meet crash safety requirements of procedure Ill of the above

120 216 DC to 40 kHz 46 49 specification.

60 108 DC to 20 kHz 46 49 Electromagnetic Interference: Tested to levels specified in MIL-
30 54 DC to 10 kHz 45 48 STD-461. Levels may be exceeded at discrete frequencies depending
15 27 DC to 5kHz 43 46 on specific system configuration.
7-1/2 13.5 DC to 2.5 kHz 43 46
3-3/4 6.75 DC to 1.25kHz 41 44

PHYSICAL CHARACTERISTICS
LOW BAND

Signal-to-Noise** Size: 20" x 16/." x 10", excluding shockmounts but including
Center Ground mating cable connectors.

Tape Speed Carrier Bandwidth Monitor Reproduce*" Weight: 72 pounds, excluding tape, for a complete 14 track Direct
lips) Freq (kHz) (±1/2 dB) (dB) (dB) Record system. 92 pounds excluding tape for a complete 14 track

120 108 DC to 20 kHz 46 49 FM Record system.

METRIC CONVERSION TABLES idhs:inches 17 2.54
Applicab!e to all Ampex recorders-specific items may Base Thicknesses: inches 1 mil 1.5 mil
not apply to the unit described ,n this sheet. mm 0.0254 0.0381

TAPE SPEEDS Length: feet 600 1200 1800 2500 3600 5000 7000 7200 9200
ips 3Y 7 ', 15 30 60 120 meters 185 366 549 762 1097 1524 2134 2195 2804
cm/sec 9.52 19.05 38.1 76.2 152.4 304.8 HEAD DIMENSIONS
TAPE DIMENSIONS Gap Scatter Interstack Spacing* Track Width & Spacing*
Reels: inches 14 12Y/ 10%, 8 microinches 100 inches 1.5 ±0.001 inches 0.050 0.070

cm 35.56 31.75 26.67 20.48 mm 0.00254 cm 3.81 ±0.00127 cm 1.27 1.778
*(IRIGI
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specifications

FR-1900 multiband
instrumentation recorder

Effective July 15, 1969

GENERAL Non-Orthogonal Timing Error (NTE): Output Leveh

The FR-1900 system consists of the follow- Between outside tracks in same head stack 1.0 volts RMS nominal across 75 ohms.

ing outstanding features: (1 to 13 for one inch tape: Intermediate Band:

* Proven High Performance Transport Tape Speed lips) NTE (psecs) Zero-to-Peak Tape S/N (RMS Signal

* Low Non-Orthogonal Timing Errors 120 2.4 Speed Bandwidth to RMS Noise)120 2.4 Speed Bandwidth to RMS Noise)
SLow Non-Orthogonal Timing Errors 60 4.8 (ips) (13 dB) (dB)

* 7-Speed Electrically Switchable Trans- 30 8.6 120 300 Hz to 600 kHz 36
port and Electronics 15 17.2 60 300 Hz to 300 kHz 36

" Multiband Electronics 7-1/2 29.4 30 150 Hz to 150 kHz 36
* FM Intra-Cal 3-3/4 53.8 15 100 Hz to 75 kHz 36

* FM Recirculating Charge Dispenser 1-7/8 87.6 7-1/2 100 Hz to 38 kHz 36

* Zero Loop Drive Flutter: Percent measured per IRIG 106-66 3-3/4 100 Hz to 19 kHz 36

" Variable Speed Operation (2-Sigma) 1-7/8 100 Hz to 10 kHz 34

* Bi-directional Operation Tape Wideband I

TAPE TRANSPORT (ips) Bandwidth % Flutter Tape S/N (RMS SignalSpeed Bandwidth to RMS Noise)
120 0.2 Hz to 10 kHz 0.15 lips) (±3 dB) (dB)

Tape Speeds: 60 0.2 Hz to 10 kHz 0.15
Discrete by switch selection (or continuous- 30 0.2 Hz to 5 kHz 0.15 120 400 Hz to 1.5 MHz 30
ly variable with variable oscillator in tach 15 0.2 Hz to 2.5 kHz 0.25 60 400 Hz to 750 kHz 29

mode). Discrete Speed Selection with seven 7-1/2 0.2 Hz to 1.25 kHz 0.30 30 400 Hz to 375 kHz 29

speeds: 120, 60, 30, 15, 7-1/2, 3-3/4 and 3-3/4 0.2 Hz to 625 Hz 0.45 15 400 Hz to 187 kHz 28

1-7/8 inches per second. Tape speeds and 1-7/8 0.2 Hz to 312 Hz 0.60 7-1/2 400 Hz to 93 kHz 27

forward and reverse drive directions are 3-3/4 400 Hz to 46 kHz 26
electrically selectable. Start Time: 1-7/8 400 Hzto 23 kHz 24

The start time required to meet flutter Wideband II
Tape Speed Accuracy: specifications is eight seconds or less at Tape S/N (RMSSignal
±0.2% maximum, long term, with input 120 ips. peRMS Signal
power variations from 105-125 volts AC, Speed Bandwidth to RMS Noise)2

47-63 Hz. Stop Time: (ips) (±3 dB) 1 (dB)

Four seconds maximum at 120 ips. 120 400 Hz to 2 MHz 20
Fast Wind Time: 60 400 Hz to 1 MHz 20

Fast forward and reverse for 14-inch reel Servo Reference Frequency: 30 400 Hz to 500 kHz 20
with 7200 feet of tape is less than five The servo reference frequency recorded shall 15 400 Hz to 250 kHz 20
minutes. Tape is continuously under capstan be 200 kHz ±0.01% at 120 ips and propor- 7-1/2 400 Hz to 125 kHz 20
control. Tape speed never exceeds 360 tionately lower at the lower tape speeds 3-3/4 400 Hz to 62 kHz 18
inches per second. (per IRIG 106-66). 1-7/8 400 Hz to 31 kHz 17

Time Base Error: Heads: 1 Zero dB reference level, half way be-

Tape Speed lips) Error in Microseconds Comply with IRIG 106-66 for 7 tracks with tween the total excursions over the

120 ±1.5 1/2 inch tape or 14 tracks with one-inch bandwidth.
60 ±3.0 tape. 2 Normal record level set-up 1% 3rd har-

30 5.0 Tape: monic distortion of 150 kHz sinusoidal
30 5.0 Tape: signal at 120 ips.
15 ±10.0 All specificati-.is and head life are based
7-1/2 ±15.0 upon the use of Ampex recommended tape. Envelope Delay:
3-3/4 L25.0
1-7/8 ±30.0 The envelope delay at 120 ips shall be less

than 500 nanoseconds peak-to-peak for a
Dynamic Skew: SIGNAL ELECTRONICS bandwidth of 100 kHz to 1.2 MHz.

The relative time displacement of an event DIRECT SYSTEM: FM SYSTEM:
recorded simultaneously on any two adja- All measurements per IRIG 106-66, refer- - All measurements per IRIG 106-66
cent tracks within the same head stack as ence paragraph 5.6.3.3.
observed on playback is less than: ence paragraphInput Impedance:
Tape Speed AT Microseconds Input Level: Selectable 75, 1000 or 20,000 ohms in

(ips) (Zero-to-Peak) 0.25 to 10 volts RMS adjustable. parallel with 100 picofarads unbalanced to
120 0.15 ground.
60 0.30 Input Impedance-Selectable:
30 0.60 75, 1000 or 20,000 ohms in parallel with Input Sensitivity:
15 1.20 100 picofarads unbalanced to ground. 0.5 volts peak to 25 volts peak adjustable.
7-1/2 2.40
3-3/4 4.80 Output Impedance: Output Impedance:
1-7/8 9.60 75 ohms ±10% for all frequencies. 75 ohms nominal.
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specifications
FR-1900 multiband
instrumentation recorder

SIGNAL ELECTRONICS (continued) Output Level:
DC Drift: Adjustable up to 4 volts peak-to-peak into

Less than ±0.5% of 'full deviation over a 20 0F temperature change in- eight hours, after a 75 ohm load (+_40% deviation). Adjustable
15 minute warm-up. up to 3 volts peak-to-peak into a 75 ohm

load (±30% deviation).
DC Linearity:
+0.5% of total deviation. Measured per IRIG 106-66. Harmonic Distortion:

Less than 2% total harmonic distortion for
Low Band: modulation indices greater than 3; less than

Center 3% for modulation indices less than 3. For
Tape Speed Carrier Bandwidth S/N (RMS Signal all harmonic frequencies up to 0.8 Fco.

lips) Freq (kHz) (11/2 dB) to RMS Noise) (dB)
120 108 DC to 20 kHz 55
60 54 DC to 10 kHz 55
30 27 DC to 5 kHz 54
15 13.5 DC to2.5 kHz 53 POWER REQUIREMENTS
7-1/2 6.75 DC to 1.25 kHz 50 Voltage:
3-3/4 3.375 DC to 625 Hz 48
1-7/8 1.6875 DC to 312 Hz 47 105 to 125 volts standard (210 to 250 volts

also available).
Total Harmonic Distortion for 120 and 60 ips 1.5%

Intermediate Band Frequency:

Center Total 47 to 63 Hz, single phase
Tape Speed Carrier Bandwidth Harmonic S/N (RMS Signal

(ips) Freq (kHz) (±1/2 dB) Distortion to RMS Noise) (dB) Power Consumption:
120 216 DC to 40 kHz 1.2% 51 Approximately 2000 watts for a 14-track
60 108 DC to 20 kHz 1.2% 51 system.
30 54 DC to 10 kHz 1.2% 50
15 27 DC to 5 kHz 1.2% 48
7-1/2 13.5 DC to 2.5 kHz 1.2% 48
3-3/4 6.75 DC to 1.25 kHz 1.5% 46 ENVIRONMENT
1-7/8 3.375 DC to 625 Hz 1.5% 45

Wideband Group I Temperature:
Operating: 50C to 430CCenter Total Non-Operating: -200C to 550C

Tape Speed Carrier Bandwidth Harmonic S/N (RMS Signal Non-Operating: -200 C to 550 C
lips) Freq (kHz) (±1/2 dB) Distortion to RMS Noise) (dB) Altitude:

120 432 DC to 80 kHz 1.2% 50 Operating: to 10,000 feet (3048 meters)0 !086 DC to 0 kHz 1.2% 50 Non-Operating: to 50,000 feet (15,00030 108 DC to 0 kHz 1.2 50meters)
15 54 DC to 10 OkHz 1.2% 48 meters)
7-1/2 27 DC to 5 kHz 1.2% 46
3-3/4 13.5 DC to 2.5 kHz 1.5% 45 Relative Humidity:
1-7/8 6.75 DC to 1.25 kHz 1.5% 43 25 to 90% without condensation (tape

limited)
Wideband Group II

Center
Tape Speed Carrier S/N (RMS Signal

(ips) Freq (kHz) Bandwidth- to RMS Noise) (dB) PHYSICAL CHARACTERISTICS
120 900 DC to 500 kHz 33
60 450 DC to 250 kHz 32 Size:
30 225 DC to 125 kHz 31 Single Cabinet: 77-5/16 inches (196.4 cm)
15 112.5 DC to 62.5 kHz 30 high by 23 inches (58.4 cm) wide by
7-1/2 56.25 DC to 31.25 kHz 29 24 inches (60.9 cm) deep.
3-3/4 28.125 DC to 15.6 kHz 26
1-7/8 14.06 DC to 7.8 kHz 25 Weight:

*Frequency response tolerance down no more than -1 dB at 0.32 Fco; down no more than Approximately 800 pounds (363 kg) for a
-4 dB at 0.8 Fco; down no more than -6 dB at Fco. 14-track system in a single rack cabinet.

METRIC CONVERSION TABLES Base Thicknesses: inches 1 mil 1.5 mil
mm 0.0254 0.0381

Applicable to all Ampex recorders-specific items may
not apply to the unit described in this sheet. Length: feet 600 1200 1800 2500 3600 5000 7200 9200

meters 185 366 549 762 1097 1524 2195 2800
TAPE SPEEDS
ips 1-7/8 3-3/4 7-1/2 15 30 60 120 HEAD DIMENSIONS
cm/sec 4.76 9.52 19.05 38.1 76.2 152.4 304.8 Gap Scatter Interstack Spacing* Track Width & Spacing*

microinches 100 inches 1.5 0.001 inches 0.050 0.070
TAPE DIMENSIONS mm 0.00254 cm 3.81 ±0.00127 mm 1.27 1.778
Reels: inches 14 10-1/2 7 5-3/4 5 *(IRIG)

cm 35.56 26.67 17.78 14.62 12.70
STANDARD PANELS FOR 19-INCH (48.25 cm) RACK

Widths: inches 1/4 1/2 3/4 1 2 in 1-3/4 3-1/2 5-1/4 7 8-3/4 12-1/4 14 15-3/4 17-1/2 19-1/4 21 35cm 0.635 1.27 1.905 2.54 5.08 cm 4.45 8.89 13.34 17.78 22.23 31.12 35.56 40.01 44.45 48.9 53.34 88.9
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I AM1EX

specifications

FR-2000 multiband
instrumentation recorder

Effective January 1, 1972

GENERAL Time Base Error: Heads: Comply with IRIG 106-69 for 7
Tape Speed Error in tracks with V2 inch tape or 14 tracks

Outstanding features of the FR-2000 are: (ips) Microseconds with one-inch tape.
120 ±t0.30

* High performance transport with ex- 60 t0.40 Tape: All specifications are based upon30 -o.so50 the use of Ampex recommended tape.
ceptionally low flutter, TBE and dy- 15 ±1.00
rfamic skew (NTE), due to Ampex's 7% -ti.50
exclusive zero loop drive, vacuum 34 t3.00
chambers and an advanced design SIGNAL ELECTRONICS
servo that provides 40,000 information Dynamic Skew:
samples per revolution. The relative time displacement of an DIRECT SYSTEM:

* System is designed for maintainability event recorded simultaneously on any All measurements per IRIG 106-69, ref-
with complete front accessibility as two adjacent tracks within the same erence paragraph 5.6.3.3.
the criterion, head stack as observed on playback is

SMultiband ES-200 electronics ... one less than: Input Level: 0.25 to 10 volts RMS adjust-
SMultiband ES-2e Tape Speed AT Microseconds able for 20 K ohm and 1 K ohm input
set does the same job as three or __(ips) (Zero-to-Peak) impedances and 0.25 to 3.0 volts RMS
more single purpose sets. 120 0.10 for 75 ohm input impedance.

" Accommodates 16" reels for long 60 0.20
30 0.50 InpUt Impedance-Selectable: 75, 1,000 or

playing time (33% more total playing s 1.00 20,000 ohms in parallel with 100 pico-
time than 14" reels). 7 2.00

314 4.00 farads unbalanced to ground.
* Modular packaging allows easy inte- 1.00 Output Impedance: 75 ohms .10% for

gration into data handling system, Outpuence 7 s
simplifies maintenance. Non-Orthogonal Timing Error (NTE): Be- all frequencies.

twden outside tracks in same head stack Output Level: 1.0 volt RMS nominal
* Control panel mounted in transport 1 to 13 for one inch tape: across 75 ohms.

module to save front panel space; Tape Speed NTE (psecs)
functional grouping of buttons simpli- (ips) Zero-to-Peak Intermediate Band:
fies operation. 120 1.0 Tape S/N (RMS Signal

60 2.0 Speed Bandwidth to RMS Noise)
0Power panel assembly in standard 30 3.5 (ips) dB) (±3 d dB)

FR-2000 rack is integrated into the 15 5 120 300 Hz to 600 kHz 37
base of the rack assembly to save 7 8 60 300 Hz to 300 kHz 37
front panel space for other signal and 34 o 30 150 Hz to 150 kHz 37monitoring equipment 15 100 Hz to 75 kHz 367 100 Hz to 38 kHz 36Flutter: Percent measured per IRIG 106- 3 100 Hz to 19 kHz 36

69 (2-Sigma) 17/8 100 Hz to 10 kHz 34
Tape Wideband I

Speed Flutter
(ips) Bandwidth % Flutter Tape S/N (RMS SignalSpeed Bandwidth to RMS Noise)

TAPE TRANSPORT 120 0.2 Hz to 10 kHz 0.13 (ips) (±3 dBl (dB)
60 0.2 Hz to 10 kHz 0.15
30 0.2 Hz to 5 kHz 0.15 120 400 Hz to 1.5 MHz 30

Tape Speeds: Discrete by switch selec- 1' 0.2 Hz to 2.5 kHz 0.18 60 400 Hz to 750 kHz 29
7 0.2 Hz to 1.25 kHz 0.25 30 400 Hz to 375 kHz 29

tion (or variable within each speed range 33 0.2 Hz to 625 Hz 0.32 15 400 Hz to 187 kHz 28
with external variable frequency oscilla- 1/ 0.2 Hz to 312 Hz 0.38 7 400 Hz to 93 kHz 27314 400 Hz to 46 kHz 26tor in tach mode). Direct activation be- 1 400 Hz to 23 kHz 24
tween any of seven discrete speeds. 120, Start Time: The start time required to
60, 30, 15, 7V2, 33/4, and 17/a inches meet flutter specifications at 120 ips with Wideband II
per second. Tape speeds and forward reels 14-inch diameter is five seconds or Tape S/N (RMS SignalSpeed Bandwidth to RMS Noise)
and reverse drive directions are elec- less (seven seconds is allowable for a (ips) (13 dB)l (dB)
trically selectable. 16-inch reel). 120 400 Hz to 2 MHz 22

60 400 Hz to 1 MHz 22

Tape Speed Accuracy: ±0.15% maxi- Stop Time: Four seconds maximum at 30 400 Hz to 500 kHz 22
120 ipS. 15 400 Hz to 250 kHz 22mum error, long term, with input power 7% 400 Hz to 125 kHz 21

variations from 105-125 volts AC, 47- 3% 400 Hz to 62 kHz 20
63 Hz. Servo Reference Frequency: The servo 1/ 400 Hz to 31 kHz 19

reference frequency recorded is 200 'Zero dB reference level, half way between the
kHz ± 0.01% at 120 ips and pro- total excursions over the bandwidth.

Fast Wind Time: Fast forward and re- l Normal record level set-up 1% 3rd harmonicverse for 14-inch reel with 7200 feet of portionately lower at the lower tape distortion of 150 kHz sinusoidal signal at 120 ips.

tape is less than 4V2 minutes. Tape is peeds. Envelope Delay: The envelope delay at
continuously under capstan control. Tape 120 ips shall be less than 500 nanosec-
speed never exceeds 360 inches per onds peak-to-peak for a bandwidth of
second. 100 kHz to 1.2 MHz.

F-7



specifications
FR-2000 multiband
instrumentation recorder

SIGNAL ELECTRONICS (continued) Output Level: Adjustable up to 4 volts
FM SYSTEM: peak-to-peak into a 75 ohm load (±40%
All measurements per IRIG 106-69. deviation). Adjustable up to 3 volts peak-All measurements per IRIG 106-69. to-peak into a 75 ohm load (±30%
Input Impedance: Selectable 75, 1,000 or 20,000 ohms in parallel with 100 picofarads deviation).
unbalanced to ground. Harmonic Distortion: Less than 2% total
Input Sensitivity: 0.5 volt peak to 25 volts peak adjustable for 20 K ohm and 1 K ohm harmonic distortion for modulation in-
input impedances and 0.5 to 10 volts peak for 75 ohm input impedance. dices greater than 3; less than 3% for
Output Impedance: 75 ohms nominal, modulation indices less than 3. For all

Output Impedance: 75 ohms nominal harmonic frequencies up to 0.8 F.
DC Drift: Less than -+0.5% of full deviation over a 20 0 F temperature change in eight
hours, after 15 minute warm-up.

BC Linearity: ±0.5% of total deviation. POWER REQUIREMENTS
Low Band: Voltage: 105 volts to 125 volts standard
Tape Speed Center Carrier Bandwidth S/N (RMS Signal (210 to 250 volts also available).

(ips) Freq (kHz) . .. ( 2 dB) to RMS Noise) (dB)
120 108 DC to 20 kHz 55 Frequency: 47 to 63 Hz, single phase.
60 54 DC to 10 kHz Power Consumption: A complete 1430 27 DC to 5 kHz 54
15 13.5 DC to 2.5 kHz 53 track record/reproduce system, exclud-

7 '6.75 DC to 1.25 kHz 50 ing monitor accessories and non-stand-334 3.375 DC to 625 Hz 48 ard options will operate at a nominal17/8 1.6875 DC to 312 Hz 471,000 watts and consume less than 1,500
Total Harmonic Distortion for 120 and 60 ips 1.5% 1,000 watts and consume less than 1,500

watts at initial turn-on.
Intermediate Band

Total
Tape Speed Center Carrier Bandwidth Harmonic S/N (RMS Signal

tips) Freq (kHz) (±1/2 dB) Distortion to RMS Noise) (dB) ENVIRONMENT
120 216 DC to 40 kHz 1.2% 54 ENVIRONMENT

60 108 DC to 20 kHz 1.2% 52
30 54 DC to 10 kHz 1.2% 51 Temperature:

7V 13.5 DC to 2.5 kHz 1.2% 50 Operating: + 50C to + 500C
3V 6.75 DC to 1.25 kHz 1.5% 47 Non-Operating: - 20 0C to + 600C
17/ 3.375 DC to 625 Hz 1.5% 45

Altitude:
Wideband Group I Operating: to 12,000 feet

Total Non-Operating: to 40,000 feet
Tape Speed Center Carrier Bandwidth Harmonic S/N (RMS Signal

lips) Freq (kHz) (+i/ dB) Distortion to RMS Noise) (dB) Relative Humidity: The System, exclud-
120 432 DC to 80 kHz 1.2% 52 ing tape limitations, will operate from 5%
60 216 DC to 40 kHZ 1.2% 51 to 90% without condensation. For tape30 108 DC to 20 kHz 1.2% 5015 54 DC to 10 kHz 1.2% 50 limitations see appropriate tape manu-

7/ 27 DC to 5 kHz 1.2% 47 facturer's specification limits.
34 13.5 DC to 2.5 kHz 1.5% 46
17/8 6.75 DC to 1.25 kHz 1.5% 43

Wideband Group II PHYSICAL CHARACTERISTICS
Tape Speed Center Carrier S/N (RMS Signal Size: Single Cabinet: 771/4 inches high bytips) Freq (kHz) Bandiwdth* to RMS Noise) (dB) 23 inches wide by 25 inches deep. In-

120 900 DC to 500 kHz 35 cluding standard rack dolly: 79 5/8 x 23 x60 450 DC to 250 kHz 35
30 225 DC to 125 kHz 34 391/4.
15 112.5 DC to 62.5 kHz 33
7V2 56.25 DC to 31.25 kHz 32 Weight: Approximately 750 pounds for a
3 28.125 DC to 15.6 kHz 32 14-track system in a single rack cabinet178 14.06 DC to 7.8 kHz 29 including a rack dolly. Multitap Interna-

Frequency response tolerance down no more than -1 dB at 0.32 F,,; down no more than -4 dB at tional transformer increases the weight
0.8 F,,: down no more than -6 dB at F0. by 75 pounds.

METRIC CONVERSION TABLES Base Thicknesses: inches 1 mil 1.5 mil
mm 0.0254 0.0381

Applicable to all Ampex recorders-specific items
may not apply to the unit described in this sheet. Length: feet 600 1200 1800 2500 3600 5000 7000 7200 9200 12500
TAPE SPEEDS meters 185 366 549 762 1097 1524 2134 2195 2800 3810
Ips 17/a 33/ 71/2 15 30 60 120 HEAD DIMENSIONS
cm/sec 4.76 9.52 19.05 38.1 76.2 152.4 304.8 Gap Scatter Interstack Spacing* Track Width & Spacing*microinches 100 inches 1.5 -0.001 inches 0.050 0.070
Reels:inches 16 14 122 102 8 mm 0.00254 cm 3.81 ±0.00127 mm 1.27 1.778Reels: inches 16 14 121/2 1012 8 (IRIG)

cm 40.64 35.56 31.75 26.67 20.32 STANDARD PANELS FOR 19-INCH (48.25 cm) RACK
Widths: inches 1/2 1 in 13/4 3V2 51/4 7 83/4 121/4 14 153/ 171/2 19/4 21 35

cm 1.27 2.54 cm 4.45 8.89 13.34 17.78 22.23 31.12 35.56 40.01 44.45 48.9 53.34 88.9
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APPENDIX G

BANDWIDTH REOUIREMENTS FOR THE OUTPUT OF AN INTEGRATE AND DUMP FILTER
ON THE AWGN CHANNEL

This appendix will derive the power spectrum of the PAM output

of an I&D detector operating on an NRZ-L signal with additive white Gaussian

noise. In the text this was needed to determine the bandwidth required to

transmit the PAM before quantizing it and converting it into PCM.

Consider Figures G.1 and G.2. As can be seen from Figure G.2

the I&D output on any given bit period is just the .addition of signal with

a Gaussian random variable. Thus the waveform of FigureG.1 can be written

as the sum of two random variables, one equally likely and the other zero

mean Gaussian. Since they are also independent their power spectrums

simply add giving

S (f) = S (f) + S (f), (G.1a)r s n

where r = s+n is the output of the I&D, s is the signal part and n is the

noise part.

Most bit syncs convert the input PCM format into NRZ-L in the

integration process thus

(43)
Ss(f) = EbSa (ufT), (G.1b)

sin x
where Eb is the bit energy, Sa (x) = x , and T is the integrate period

(usually T 1= /bit rate).

(43)
The spectrum S (f) is found as follows

N N

S (f) = lim N E F (f) (f (G.2)N m
m=O n=O

G-1



r

S

T 2T 3T 4TI  5T 6T 7T
-s

1 1 0 1 1 0 0 Data

FIGURE G.1 I&D OUTPUT WAVEFORM

0 2T/7 3T/7 4T/7 5T/7 6T

-s
r
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where

(n+1)T

F n(f) = ane-jt dt, (G.3)

nT

N0
where an is a zero mean Gaussian random variable with variance NW, - is

the channel noise spectrum and W is the bandwidth of the channel (usually

the prefilter preceeding the I&D).

(Fm(f) * -- jw(m-n)T 2 S2(T)

E (f) F(f) = aae T Sa fT)

= NOWT2 Sa2(rfT), (G.4)

--- a2  No
where independence of a with a for m n, a = 0, and a = N W wasn m n n 0

employed. Using (G.2)

S (f) = NOWT S 2(RfT). (G.5)

Thus defining S = Eb/T and N = N W

Sr(f) = + EbSa2(TrfT) G.6)

Conclusion: The bandwidth requirement for the output of an l&D is the

same as that of the noisefree signal! The only modification to the power

spectrum is an increase in its amplitude as the S/N decreases.

Fn(f) is the Fourier transform of one rectangular pulse of height

a and duration T.n
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APPENDIX H

TAPE RECORDING WITH REMOTE DECODING VS. SITE'DECODING COST CONSIDERATIONS

This appendix is an edited version of a study done by Dr. F. Kalil

of the Advanced Systems Code 860 of GSFC/NASA. Due to the lateness of its

completion it was not integrated into the main body of this final report.

H1. TAPE RECORDING AND SHIPPING COSTS

H1.1 MOTHER/DAUGHTER DATA'

To obtain a 5 dB coding gain, the PCM Decom must provide soft

decisions. This means that for each input bit, the Decom must provide at

least 3 output bits in parallel. The best approach is to record these

three parallel bit streams plus a timing signal on-four tracks of the same

head stack with a multiple track tape recorder, which is available at the

remote sites.

Thence, the bit rate being recorded on the three data tracks is

32,768 bps including the 1/2 convolutional code.

Assume the FR-19.00 or FR-2000 recorders are used. These are the

predominant recorders at the USBS stations, which will be prime for these

missions. Then, the tape speed must be 15 inches/sec (ips) to give the

required response. These tape recorders use 1 inch by 9600 feet wideband

(45)
analog tape, which cost $52.45/reel per present contract and weigh

14 Ibs.

The time required to fill this tape at 15 ips is:

t1 = 9600 ft. x 12 inches/ft. x 1 sec/15 inches x 1 hr/3600 sec

= 2.13 hrs/tape
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The coverage time (t2 ) in three years for mother and daughter craft

is:

t2 = 2 craft x 3 years/craft x 365 days/yr x 24 hrs/day

= 5.25 x 104 hrs.

Number of tapes N is

N = t2/t 1 = 5.25 x 104 hrs/2.13 hrs/tape = 2.46 x 104 tapes

= 24,600 tapes (1" x 9600 ft. reels) for Mother Daughter

Missions over a three year lifetime.

Purchase cost of tapes, Ctapes

C = 2.46 x 104 tapes x $52.45/tape
tapes

= 1.2930 x 106 dollars

= $1,293,000 for Mother/Daughter mission

Shipping costs of tapes, Cshipping is

C = 2.46 x 104 tapes x 14 Ibs/tape
shipping

x $2.00/1 Ib (ave. cost round trip)

= $690,000 for Mother/Daughter missions

Cost of tapes plus shipping for Mother/Daughter missions, CM/D is

CM/D = $1,983,000 (assuming all new tapes)

H1.2 HELIOCENTRIC MISSIONS

Heliocentric mission tapes costs, CH is computed as follows. Full

coverage is required for the three year lifetime. Hence, the mission time

is 1/2 that for both mother and daughter. Also, since the data rate permits

a lower tape speed of 1 7/8 ips, which is 1/8 the speed needed for the

Round trip cost is used because tape must first be shipped to the
site, used and shipped back to GSFC.
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mother/daughter missions, the total tape costs

CH = 1/2 x 1/8 x CM/D

= $125,000 (costs of tapes and shipping for Heliocentric Mission,

assuming all new tapes).

H1.3 OTHER FACTORS

A tape may be erased and reused up to 6 times maximum, then rehabili-

tated and reused up to 6 more times maximum. A tape can be rehabilitated up

to 6 times depending on wear-out factors such as tape speed. However, in

addition to the cost of erasing, packaging, receiving, unpacking, inspecting,

and storing for ready use, the two-way shipping must be taken into account

again. That is, after the data has been extracted from the tapes at GSFC,

and the tapes erased or rehabilitated, they must be shipped to the remote

site(s) for reuse and shipped back to GSFC for data extraction. These two-way

shipping costs are more than. 1/2 the original cost of the tape.

Regarding tape log.istics, each site must be equipped with spare tapes,

facilities for tape handling and storage, as well as personnel. For instance,

(46)
Rosman has 4 men (1 man/shift) for logging shipping of tapes, even though

Rosman transmits via NASCOM a large portion of their acquired data. Also,

Code 860 has 2 civil service and 3 or 4 contractor personnel for intermediate

handling of tapes prior to shipping them to Code 500 for information processing.

However, these manpower costs, prorated by project, are difficult to assess.

Furthermore, if one wishes to compare total tape costs with total NASCOM costs,

prorated by project, then one must also consider the NASCOM, prorated manpower

costs, which could be very difficult and highly subjective. Therefore, it

appears that a less subjective yet acceptable approach for comparison purposes
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would be to compare only the tape and shipping costs versus the NASCOM line

costs on a prorated basis. Hence, manpower costs will not be discussed

further.

Assuming an average tape can be reused a total of 6 times then the

tape costs computed earlier are reduced by one-sixth, i.e.

Ctapes = 1/6 x $1,293,000

= $215,500 for M/D missions, assuming reuse of tapes six times.

The two-way shipping costs remain the same whether a tape is new,

erased, or rehabilitated, i.e.

Cshipping = $690,000 for M/D missions.

Then, cost of tapes plus shipping for Mother/Daughter missions is

CM/D = $905,500, assuming reuse of tapes.

Since the Heliocentric Mission will use one-sixteenth as many tapes,

its tape costs are:

CH = 1/16 x $905,000 = $56,500, assuming reuse of tapes six times.

Total tape costs for M/D and H missions including shipping, for the

mission life of 3 years is

CM/D, H = $962,000, assuming reuse of tapes six times

This does not include any handling costs.

Assume inflation is 5%, compounded yearly for 6 years up to midway

in the mission life. (Launch is planned for August 1977, and the mission

life is 3 years). Then, inflation could increase these costs by over 33%.
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H2. DECODING AND WIRE TRANSMISSION (NASCOM) COSTS

The following considers the decoder and prorated NASCOM costs.

H2.1 DECODER COSTS

Assuming the Linkabit, model LV7015 Viterbi Decoder costs given

earlier are used, i.e. $5,000/unit for quantities less than 4 and $3,950/unit

for quantities greater than 10. To be conservative, the $5,000/unit cost will

be used. Again to be conservative, assume each of the sites in the 15 station

network will be equipped with two of these decoders, one of which may be

considered a back-up or a spare. Then any one of the sites can support any

two of the M/D and H missions simultaneously, if necessary, when they are in

the same beamwidth, or the site has adequate antennas and receivers.

Then the decoder costs are

CDecoders = 2 decoders/site x 15 sites x $5,000/decoder

CDecoders = $150,000, including spares.

Although these decoders can be used to support other missions and these costs

prorated, this will not be considered here to be conservative.

H2.2 PRORATED NASCOM COSTS

Consider the following, 1973, voice band costs as provided by NASCOM,

Madrid $13,000/mo = $156,000/yr

Orroral $26,000/mo = $312,000/yr

Goldstone $ 1,500/mo = $ 18,000/yr

Total $486,000/yr

Each of these sites would spend an average of 8 hrs per day or 1/3 of their

time supporting the NH mission. Since the decoded data is 2 Kbps only one
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voice line/site would be needed to transmit the decoded data to GSFC. Hence,

the prorated NASCOM costs for NH would be about

CNASCOM, NH = 1/3 x $486,000 = $162,000/yr

Assume that in the IME time frame (first launch August 1977) the 9.6 Kbps

modems are operational, then only two voice lines in parallel would be needed

to transmit the Mother or Daughter decoded data of 16 Kbps. Hence to provide

continuous coverage to both mother and daughter, the prorated NASCOM costs are

CNASCOM, M/D = 2 craft x 2 lines/craft x $162,000 = $648,000/yr

Hence, the total prorated NASCOM cost for NEMD/NH, i.e. the 3 IME craft is

CNASCOM, M/D, H = $810,000/yr

CNASCOM, M/D, H = $2,430,000/3 yrs the mission lifetime

Including cost of decoders and spares this is

CM/D, H = $2,580,000; prorated NASCOM, decoders and spares for

3 years mission life.

As a gross check on this latter cost, consider the following rationale.

(41)(47)
FY-73 NASCOM leased channel costs are $26,000,000-+ $4,000,000 for operations.

(48)
In FY-73 the number of unmanned spacecraft missions supported was about 39.

A large part of these NASCOM costs are for the Lyndon B. Johnson Space Center,

manned flight support requirements and the Deep Space Network requirements.

Hence, only about half (very approximate) of these NASCOM costs can be prorated

over the above 39 unmanned missions. Thence, the average prorated NASCOM cost

per mission per FY-73 is $334,000, neglecting NASCOM operations. Therefore,

for the three IME spacecraft (M/D, H) over three years, this computes to

$3,000,000 NASCOM channel costs, which satisfactorily checks the earlier compu-

tation, i.e. it is within 17% of the earlier computation.
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H3. COST SUMMARY FOR IME, NEMD/NH OVER 3 YR. MISSION LIFE

Total

Option 1 (Record On-Site & Ship Tapes to GSFC) Cost

1. All new tapes + shipping, excluding handling $2,108,000
(probably pessimistic cost)

2. Tapes reused 6 times + shipping, excluding $ 962,000
handling (probably optimistic cost)

3. More realistic cost of tapes + shipping, $2,000,000
excluding handling costs, i.e. average of

.the above plus inflation

Option 2 (Decode On-Site and NASCOM to GSFC)

1. Prorated NASCOM + decoders and spares $2,580,000

o May be pessimistic since SPADE System
could reduce these costs, if SPADE is
time shared with other missions.

H4. CONCLUSIONS

The costs are so comparable that Option 2 may be considered as being

the more cost-effective, with emphasis on the word effective, for the following

reasons: (1) it can provide the experimental data to the GSFC/POCC in essen-

tially real time; (2) it could satisfy the project's expectations for consider-

able real-time control of some experiments where spacecraft and experiment

status need to be monitored in real-time for/during such control.

However, if it develops that the project will have no real-time

requirement for quick-looks and related experiment control, and if the analog

downlink data could be recorded on another channel of the same tape which is

recording the convolutionally coded data, then recording and shipping of tapes

becomes more attractive. On the other hand, if NASCOM voice channels will be

available anyway, whether the spacecraft data is recorded or not, the more
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realistic costs for option 2 might not need to include NASCOM costs in the

trade-off analyses. In that case, option 2 again could be more attractive,

especially since the decoders could be used for support of other missions.

Also, if decoders with capability of handling 2 Mbps, information data rate,

are desired, then the decoder costs are approximately doubled from $150,000

to less than $300,000 for 30 decoders, excluding installation and other costs.

The above conclusions bring to mind a third and very interesting

option not discussed earlier

Option 3 (Decode at the Remote Sites, then Record and Ship Tapes)

Cost of decoders, as before = $150,000 for 30 decoders.

The bit rate to be recorded will be reduced from three channels

at 32 Kbps per channel (soft decision coded data) to 16 Kbps if only one

channel. The tape speed can then be reduced from 15 to 7.5 ips. (See

Appendix F which includes the recorder specifications for several of the

network recorders.) Thus, the costs for tapes and shipping will be reduced

by one-half; i.e. from about $2,000,000 to about $1,000,000 for the three

year life of the three spacecraft (M/D and H), so that:

Total cost for this option is

$1,150,000 (decoders, spares, some new tapes, some reused tapes,
plus shipping, excluding handling).

This is a saving of $850,000 over option 1, where the data is recorded

and shipped prior to decoding. Also, the STDN ground stations could use the

same decoders for support of other missions which may use this convolutional

coding scheme to get the advantage of 5 dB coding gain. This could result in

further, similar cost savings to the STDN.
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Thus, it now appears timely for Network Engineering, NASCOM, and

the Project (or Projects) to further evaluate the merits of decoding at

the remote sites. This preliminary study shows that it could be very

attractive in terms of both economics and efficiency.

H-9



APPENDIX I

THE COMSAT "SPADE" SYSTEM

The term "SPADE" is derived from Single Channel per carrier,

PCM, multiple Access Demand assignment Equipment and is used to describe

a Comsat accessing system for the Intelsat satellite system. In the SPADE

system a frequency bin consisting of some 800 frequencies is formed. As

bach user requires a link up to and down from the satellite it is assigned

by SPADE by randomly selecting frequencies from the bin (the randomness

enhances the channel separation characteristics). The system is completely

flexible in that neither end of a channel is permanently associated with

any terminal, rather the channels are paired to form a link as required

within the demand assignment bin.

Figure Il is a block diagram of a SPADE terminal. Telephone

CHANNEL UNIT No I
PCM CHANNEL I1 PSK
CODEC SYNCHRON:IZER __ MODEM

-- RI- E R c RRIER I

VOICE CHANNEL REQUENCY
T T DETECTOR UABLE  SYNTHESIZER
INTERFACE L_-_--C 

"
-- 

J  - TO
c UNIT EFREQ OIT

ASSIGNMENT NUMBER IF EARTH STATION
SUB- IF PANEL

- YSTEM
CHANNEL UNIT No. N

L--- - - -- --

EMAND OASSIGNENT S GNALING AND SWITCHING UNIT

NAL 8 SWITCH CSC PSK
CONTROL PROCESSOR -jSYNCHRO1ZE I MOOEM,

L - - -J-- -
L _j

TYP TE TIME 8 1 TIMING AND FREO
TERMINAL FREQ UNIT TO ALL UNITS

FIGURE 11 BLOCK DIAGRAM OF A SPADE TERMINAL
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circuits are interconnected between the loca.l transit center and the SPADE

terminal by way of the terrestrial interface unit. When a call request is

received the demand assignment signaling and switching unit selects a

frequency pair from the bin, notifies the destination station of the incoming

call, and also notifies it of the frequency to be used for responding. The

two frequencies selected are removed from the list of those available to

other users.

The frequency synthesizer is commanded to generate the assigned

frequency for the carrier. Once the connection has been established an

analog signal is converted to a PCM bit stream by the PCM codec. The codec

also reverses the process for received PCM. The channel synchronizer sets

the timing, buffers, and frames the data. -The PSK modem modulates the carrier

which is then frequency multiplexed with other modem outputs so that the

total PCM/FDM spectrum can be transmitted to the satellite. For received

modulated signals the reverse of the above process takes place. The carrier

on/off function makes use of the lulls in conversations to save power by

disabling the carrier during the dead time.

It should be noted that for digital data the PCM codec is simply

bypassed; thus the system can readily provide PCM channels for the data

received by the STDN.

The potential for the SPADE system is to provide low cost high

data rate communications since the PCM bit rate which can be accommdated is

56 kbps. As stated in the text of the report the cost for a 56 kbps channel

using SPADE is estimated to be on the order of three times the cost of a

voice band channel at present. This opens up the possibility of real time
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data transmission to and from STDN sites at a relatively low cost (compared

with wide band line costs today).
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